[Prokaryotic expression and helicase activity analysis of PDCoV NSP13].

Sheng Wu Gong Cheng Xue Bao

College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Porcine deltacoronavirus (PDCoV) is a major pathogen causing fatal diarrhea in suckling piglets, and there is currently a lack of effective vaccines and drugs to prevent and control the virus. The nonstructural protein 13 (NSP13) serves as a virus-coded helicase and is considered to be a crucial target for antiviral drugs, making it imperative to investigate the helicase activity of NSP13. In this study, the gene of PDCoV was synthesized and integrated into the prokaryotic expression vector pET-28a to construct the recombinant plasmid pET-28a-NSP13. NSP13 was successfully expressed in BL21 (DE3) and subsequently purified. The study also verified the helicase activity of the purified NSP13 and explored the factors that influence this activity. The results indicated that NSP13 from PDCoV was effectively expressed in the prokaryotic system and exhibited helicase activity, capable of unwinding double-stranded DNA with a tail at the 5' end. Additionally, NSP13 demonstrated an annealing function by promoting the complementary pairing of single-stranded nucleotide chains to form double strands. The helicase activity of NSP13 was affected by metal ions, but Mgconcentrations in the range of 0.5-6.0 mmol/L had no significant effect on helicase activity of NSP13. When the solution pH was in the range of 4-9, there was no difference in helicase activity. ATP concentrations in the range of 0.25-6.00 mmol/L had a weak effect on helicase activity, and NSP13 concentration ≥80 nmol/L inhibited the helicase activity. We obtained the NSP13 of PDCoV and investigated its helicase activity. These findings provided a theoretical foundation for the further research on the regulatory mechanism of NSP13 in PDCoV replication and the development of anti-coronaviral drugs.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.240039DOI Listing

Publication Analysis

Top Keywords

helicase activity
40
activity nsp13
20
nsp13 pdcov
12
helicase
11
activity
11
nsp13
11
pdcov
6
[prokaryotic expression
4
expression helicase
4
activity analysis
4

Similar Publications

Targeted degradation of Werner syndrome helicase (WRN) via ligand-directed covalent hydrophobic tagging.

Eur J Med Chem

September 2025

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.

View Article and Find Full Text PDF

DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.

View Article and Find Full Text PDF

Chronic infection with high-risk human papillomavirus (HPV) types increases the risk of developing cervical cancer (CC). Notably, these HPV types are implicated in ~70% of all CC cases. YTH N6-methyladenosine RNA-binding protein C2 (YTHDC2) is an N6-methyladenosine reader associated with several cancers, although its specific function in CC remains poorly understood.

View Article and Find Full Text PDF

ATPase-deficient CHD7 disease variant disrupts neural development via chromatin dysregulation.

J Genet Genomics

September 2025

Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Sh

Chromodomain helicase DNA binding protein 7 (CHD7), an ATP-dependent chromatin remodeler, plays versatile roles in neurodevelopment. However, the functional significance of its ATPase/nucleosome remodeling activity remains incompletely understood. Here, we generate genetically engineered mouse embryonic stem cell lines harboring either an inducible Chd7 knockout or an ATPase-deficient missense variant identified in individuals with CHD7-related disorders.

View Article and Find Full Text PDF

DDX3X mutation and Epstein-Barr virus cooperate to induce R-loop-dependent oncogenesis.

Cell Rep

September 2025

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Gé

RNA helicase DDX3X is generally implicated in inflammasome activation and anti-viral responses. We characterize the common features of scattered DDX3X mutations in lymphoid cancers using molecular dynamics simulation and crystallization, thereby demonstrating their crucial role in Epstein-Barr virus (EBV) lytic gene-driven oncogenic processes. The DDX3X mutation is significantly related to impaired stimulator of interferon genes (STING)/ interferon regulatory factor 7 (IRF-7)/interferon (IFN)-α/β-mediated innate immunity, overexpression of EBV lytic gene BNLF2b, and increased formation of R-loops.

View Article and Find Full Text PDF