98%
921
2 minutes
20
Background: Diabetic retinopathy (DR) is the most important complication of Type 2 Diabetes (T2D) in eyes. Despite its prevalence, the early detection and management of DR continue to pose considerable challenges. Our research aims to elucidate potent drug targets that could facilitate the identification of DR and propel advancements in its therapeutic strategies.
Methods: A broad multi-omics exploration of DR was presented to decipher the drug targets of DR and proliferative diabetic retinopathy (PDR). Transcriptome-Wide Association Studies (TWAS), fine-mapping and conditional analysis were applied to unearth potential tissue-specific gene associations with DR. Summary Data-based Mendelian Randomization (SMR) provided secondary analysis of high confidence genes. Cis-instrument of druggable genes were extracted from the eQTLGen Consortium and PsychENCODE, facilitating drug-target MR supported by colocalization analysis. Phenome-Wide Association Studies (PheWAS) was conducted on the high confidence genes. Metabolomic and immunomic MR-profiling further augmented our research as complement.
Results: TWAS identified multiple robust genetic loci in both DR and PDR (WFS1, RPS26, and SRPK1) through genetic associations across different tissues. Meanwhile, we have delineated both the commonalities and discrepancies between DR and PDR at the transcriptomic level, represented by DCLRE1B as the hub gene that DR progressed into PDR. SMR revealed 92 key DR-related genes and 55 PDR-related genes. HLA-DQ family genes have a frequent occurrence, while RPS26, WFS1 and SRPK1 were validated as the genetic network's linchpins. Drug-target MR casted ERBB3 and SRPK1 as candidate effector genes for DR and PDR susceptibility. In addition, metabolomics and immunomics analyses also revealed multifaceted pathogenic factors for DR.
Conclusions: Our research offers targeted therapeutic insights for early-stage DR and facilitates multi-omic comparisons of it and PDR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667901 | PMC |
http://dx.doi.org/10.1186/s12967-024-05856-7 | DOI Listing |
Drug Deliv Transl Res
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.
Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.
View Article and Find Full Text PDFOncogene
September 2025
Division of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.
View Article and Find Full Text PDFTrends Pharmacol Sci
September 2025
Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.
The escalating threat of antimicrobial resistance demands innovative therapeutic strategies beyond classical targets. Recent insights into the mechanisms of bacterial iron acquisition - ranging from siderophores and heme uptake to ferrous iron transport - have enabled new approaches to impair pathogen growth and virulence. These pathways are increasingly being harnessed for therapeutic gain.
View Article and Find Full Text PDFJ Affect Disord
September 2025
National University of Singapore (NUS), Department of Psychology, Singapore. Electronic address:
Background: Childhood maltreatment is a transdiagnostic risk factor that is robustly associated with the development of anxiety and depressive disorder symptoms in adulthood. This study thus aimed to investigate potential mediators between early childhood abuse and adult psychopathology severity using data from an 18-year longitudinal study among community-dwelling adults in the U.S.
View Article and Find Full Text PDFAnal Biochem
September 2025
College of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study aimed to investigate potential biomarkers related to Endoplasmic reticulum (ER) stress in Amyotrophic lateral sclerosis (ALS) through a comprehensive bioinformatic approach. The gene expression profiles of ALS patients and healthy controls were downloaded from the Gene Expression Omnibus (GEO) database. ER stress-related genes were collected from the MSigDB databases and document literature.
View Article and Find Full Text PDF