Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A three-component reaction of trifluoromethyl enones, phosphine oxides, and alcohols in water solution is developed. This defluorinative reaction occurs through a cascade process involving defluorophosphorylation, defluoroalkyloxylation, and defluoroheteroannulation, enabling the modular synthesis of furans with four distinct substituents: 2-alkyloxy, 3-trifluoromethyl, 4-phosphoryl, and 5-(hetero)aryl groups. Moreover, apart from alcohol substrates, the scope of nucleophiles could be further extended to phenols, azacycles, or sulfonamide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c04488DOI Listing

Publication Analysis

Top Keywords

modular synthesis
8
synthesis furans
8
defluorinative reaction
8
reaction trifluoromethyl
8
trifluoromethyl enones
8
furans nonidentical
4
nonidentical substituents
4
substituents aqueous
4
aqueous defluorinative
4
enones nucleophiles
4

Similar Publications

The locus coeruleus-norepinephrine (LC-NE) system regulates arousal and awakening; however, it remains unclear whether the LC does this in a global or circuit-specific manner. We hypothesized that sensory-evoked awakenings are predominantly regulated by specific LC-NE efferent pathways. Anatomical, physiological, and functional modularities of LC-NE pathways involving the mouse basal forebrain (BF) and pontine reticular nucleus (PRN) were tested.

View Article and Find Full Text PDF

Zinc(II) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed.

View Article and Find Full Text PDF

[2,1]-Azaboranaphthalenes represent unique boron-nitrogen (BN) isosteres of naphthalenes, attracting interest for the development of molecules with enhanced therapeutic potency. The existing synthetic strategies are generally two-component reactions with harsh conditions. Here we report an organocatalysed three-component modular synthesis of ring-fused BN isosteres and BN-2,1-azaboranaphthalenes following ring expansion of unstrained cyclic ketones (n = 4-8) via Wolff-type rearrangement.

View Article and Find Full Text PDF

Synthesis and Optical Properties of Unsymmetric Aromatically π-Extended BODIPY.

J Org Chem

September 2025

School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.

A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.

View Article and Find Full Text PDF

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF