98%
921
2 minutes
20
A central topic in neuroscience is the neural coding problem which aims to decipher how the brain signals sensory information through neural activity. Despite significant advancements in this area, the characterisation of information encoding through the precise timing of spikes in the somatosensory cortex is limited. Here, we utilised a comprehensive dataset from previous studies to identify and characterise temporal response patterns of Layer 4 neurons of the rat barrel cortex to five distinct stimuli with varying complexities: Basic, Contact, Whisking, Rough, and Smooth. A Gaussian Mixture Model (GMM) clustering analysis was applied to identify distinct temporal response patterns. We found that three stimuli (Rough, Smooth, and Contact) produced multiple temporal response patterns while Whisking and Basic stimuli exhibited a single pattern for all conditions. These patterns of neuronal responses were differentiated by the speed and strength of the responses when more than two clusters were present. Investigation into stimulus complexity indicated that stimuli with lower complexity scores (Whisking and Basic) resulted in fewer distinct response patterns, reflecting the reduced variability in the input information signal to Layer 4. In contrast, stimuli with higher complexity scores (Rough, Smooth, and Contact) produced distinct temporal response patterns, likely driven by a broader range of deflection amplitude variations and whisker direction changes. Further analysis of neuronal responses to Contact, Rough, and Smooth stimuli revealed three broad groups of temporal response patterns: phasic on-off response, prolonged on-off response, and tonic response. We speculate that these groups of temporal response patterns encode information about the velocity, acceleration, position, direction, and continuous monitoring of whisker deflection stimuli. The observed patterns contribute to the understanding of how neurons in Layer 4 of the rat barrel cortex specialise in encoding specific features of sensory stimuli and highlight the role of stimulus complexity in shaping neuronal responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666059 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315887 | PLOS |
Neotrop Entomol
September 2025
Grupo de Ecología Química, Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de La Frontera Sur, Tapachula, , Chiapas, Mexico.
Insect chemoreception is essential for locating food, selecting oviposition sites, and detecting infochemicals. In tephritid fruit flies, chemosensory perception occurs primarily through sensilla on the antennal flagella, maxillary palps, and ovipositor. Identifying these sensilla provides insights into olfaction, which may lead to improvements in insect control measures.
View Article and Find Full Text PDFLearn Behav
September 2025
Departamento de Psicología, Facultad de Ciencias de la Educación y Psicología, Universidad de Córdoba, Calle San Alberto Magno, s/n, 14071, Córdoba, España.
This study investigates learning transfer processes in the teaching of pure tacts and intraverbals within the context of verbal behavior. The objectives were: to assess whether training pure tacts and intraverbals, through the inclusion of different stimuli, facilitates learning transfer to new impure tacts, and to determine whether one of these verbal operants (pure tact or intraverbal) better promotes learning transfer. The sample included 54 children aged 11-12 years, using a within-subjects experimental design with pre-post measures.
View Article and Find Full Text PDFJ Math Biol
September 2025
School of Mathematical Sciences and Institute of Natural Sciences, MOE-LSC, CMA-Shanghai, Shanghai Jiao Tong University, Shanghai, China.
It has been noticed that when the waiting time distribution exhibits a transition from an intermediate time power-law decay to a long-time exponential decay in the continuous time random walk model, a transition from anomalous diffusion to normal diffusion can be observed at the population level. However, the mechanism behind the transition of waiting time distribution is rarely studied. In this paper, we provide one possible mechanism to explain the origin of such a transition.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.
View Article and Find Full Text PDFNat Rev Microbiol
September 2025
National Centre for Antimicrobial Stewardship, Department of Infectious Diseases, Melbourne Medical School, The University of Melbourne, Carlton, Victoria, Australia.
The global rise of antimicrobial resistance (AMR) poses a profound threat to human, animal and environmental health. Although antimicrobials have revolutionized modern medicine, their overuse and misuse have accelerated AMR, necessitating urgent, multisectoral action. Antimicrobial stewardship (AMS), a set of coordinated strategies that promote responsible antimicrobial use, has emerged as a key intervention in managing AMR.
View Article and Find Full Text PDF