Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Mott-Ioffe-Regel limit sets the lower bound of the carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of the quasiparticle scattering rate, such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound. Here we report the observation of quantum oscillations from Landau quantization near the Mott-Ioffe-Regel limit in CaAs. Despite the insulator-like temperature dependence of resistivity, CaAs presents giant magnetoresistance and prominent Shubnikov-de Haas oscillations from Fermi surfaces, indicating highly coherent band transport. In contrast, quantum oscillation is absent in the magnetic torque. The quasiparticle effective mass increases systematically with magnetic fields, manifesting a much larger value than what is expected based on magneto-infrared spectroscopy. This suggests a strong many-body renormalization effect near the Fermi surface. We find that these unconventional behaviors may be explained by the interplay between the mobility edge and the van Hove singularity, which results in the formation of coherent cyclotron orbits emerging at the diffusive bound. Our results call for further study on the electron correlation effect of the van Hove singularity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660949PMC
http://dx.doi.org/10.1093/nsr/nwae127DOI Listing

Publication Analysis

Top Keywords

mott-ioffe-regel limit
12
observation quantum
8
quantum oscillations
8
limit caas
8
free path
8
diffusive bound
8
van hove
8
hove singularity
8
oscillations mott-ioffe-regel
4
limit
4

Similar Publications

Tailoring charge transport in solids on demand is the overarching goal of condensed-matter research as it is crucial for electronic applications. Yet, often the proper tuning knob is missing and extrinsic factors such as impurities and disorder impede coherent conduction. Here, we control the very buildup of an electronic band from impurity states within the pseudogap of ternary Fe_{2-x}V_{1+x}Al Heusler compounds via reducing the Fe content.

View Article and Find Full Text PDF

Disorder- and Interaction-Driven Quantum Criticality in WSe.

ACS Nano

April 2025

SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea.

Quantum fluctuations resulting from strong Coulomb interactions or strong disorders lead to quantum phase transitions (QPTs) in 2D materials. However, understanding of disorder- and interaction-driven QPTs remains a fundamental challenge in 2D materials owing to the presence of strong disorder and strong Coulomb interactions. Here, we study the systematic interplay of strong disorder and strong Coulomb interactions by controlling the thickness of WSe to elucidate the disorder- and interaction-driven metal-insulator QPTs.

View Article and Find Full Text PDF

Observation of quantum oscillations near the Mott-Ioffe-Regel limit in CaAs.

Natl Sci Rev

December 2024

State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.

The Mott-Ioffe-Regel limit sets the lower bound of the carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of the quasiparticle scattering rate, such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound.

View Article and Find Full Text PDF

Electronic diffusion in a normal state of high-Tc cuprate YBaCuO.

Proc Natl Acad Sci U S A

March 2024

Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana 1000, Slovenia.

The bad metallic phase with resistivity above the Mott-Ioffe-Regel (MIR) limit, which appears also in cuprate superconductors, was recently understood by cold atom and computer simulations of the Hubbard model via charge susceptibility and charge diffusion constant. However, since reliable simulations can be typically done only at temperatures above the experimental temperatures, the question for cuprate superconductors is still open. This paper addresses this question by resorting to heat transport, which allows for the estimate of electronic diffusion and it further combines it with the resistivity to estimate the charge susceptibility.

View Article and Find Full Text PDF

Exciton transport in two-dimensional Ruddlesden-Popper perovskite plays a pivotal role for their optoelectronic performance. However, a clear photophysical picture of exciton transport is still lacking due to strong confinement effects and intricate exciton-phonon interactions in an organic-inorganic hybrid lattice. Herein, we present a systematical study on exciton transport in (BA)(MA)PbI Ruddlesden-Popper perovskites using time-resolved photoluminescence microscopy.

View Article and Find Full Text PDF