Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Syndromic multiplex panel testing enables simultaneous detection of multiple respiratory pathogens, but limited data is available on the comparative diagnostic performance of different testing systems. In this multicenter prospective study, we aimed to compare the QIAstat-Dx Respiratory Panel 2.0 (QIAstat-Dx-RP2.0) with the widely used BioFire-RP2.1, using 269 respiratory clinical specimens. Concordant test results were obtained in 232 (86.3%) cases. Discordant test results included 33 BioFire-RP2.1(+)/QIAstat-Dx-RP2.0(-) and 4 BioFire-RP2.1(-)/QIAstat-Dx-RP2.0(+) results. Discordant samples showed significantly lower pathogen loads than concordant ones (p < 0.01). Overall, the QIAstat-Dx-RP2.0 showed an analytical sensitivity of 50%-100% depending on the respiratory target, with an analytical specificity ≥ 99.0%. Most significant differences were found for the detection of adenovirus, human coronaviruses, respiratory syncytial virus, human rhinovirus/enterovirus and SARS-CoV-2 (kappa-score: 0.67-0.91). Co-detections of respiratory pathogens were identified in 47 cases by BioFire-RP2.1 and 29 by QIAstat-Dx-RP2.0. Agreement rates between the two multiplex panel tests decreased from 91.8% for single pathogen detections to 65.0% and 42.9% for co-detecting two and three pathogens, respectively. Pathogen loads were significantly lower in co-detections compared to single pathogen detections (p < 0.01), potentially explaining the lower detection rates with the QIAstat-Dx-RP2.0 in cases of multiple pathogens. In conclusion, our prospective multicenter evaluation showed good diagnostic performance of the QIAstat-Dx-RP2.0 assay, but lower detection rates for some respiratory targets compared to BioFire-RP2.1. As QIAstat-Dx-RP2.0 offers advantages in handling, noise emission, cost effectiveness, and provides semi-quantitative results compared to BioFire-RP2.1 an updated version with enhanced analytical sensitivity would be a viable alternative syndromic testing system for detecting respiratory pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664495PMC
http://dx.doi.org/10.1002/jmv.70129DOI Listing

Publication Analysis

Top Keywords

multiplex panel
8
respiratory pathogens
8
multicenter evaluation
4
evaluation qiastat-dx
4
qiastat-dx biofire
4
biofire multiplex
4
panel tests
4
tests detection
4
respiratory
4
detection respiratory
4

Similar Publications

Purpose: Acute graft-versus-host disease (aGVHD) is a significant cause of death in recipients of allogeneic hematopoietic stem cell transplantation. In this type of graft, the intestine is particularly affected, with the loss of intestinal barrier integrity playing a key role in its onset. In this scenario, the aim of the present research was to evaluate defibrotide, a heparin-like compound, marked for severe veno-occlusive disease, as an innovative therapeutic approach for restoring intestinal barrier integrity using an in vitro model and analyzing aGVHD patients' sera and clinical data.

View Article and Find Full Text PDF

Flexible and robust cell-type annotation for highly multiplexed tissue images.

Cell Syst

September 2025

Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA. Electronic address:

Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention.

View Article and Find Full Text PDF

Imaging mass cytometry dataset of small-cell lung cancer tumors and tumor microenvironments.

BMC Res Notes

September 2025

Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.

Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).

View Article and Find Full Text PDF

Purpose Of Review: Diagnostic stewardship (DS) aims to optimise the use of laboratory testing to improve patient care while reducing unnecessary tests. This review examines recent evidence on DS interventions to optimise the use of resources, focusing on three key areas: reducing unnecessary testing, maximising the impact of existing tests, and avoiding the overdiagnosis of hospital-acquired infections.

Recent Findings: Multiple interventions have demonstrated effectiveness in reducing unnecessary blood and urine culture testing, including clinical decision support tools, education programs, and multidisciplinary approaches.

View Article and Find Full Text PDF

Foodborne diseases are caused by various pathogens and generally present with similar symptoms, mainly digestive disorders. Adopting a syndromic approach is therefore important when investigating foodborne disease outbreaks. This involves using multiplex PCR-based methods to test stool and food samples.

View Article and Find Full Text PDF