98%
921
2 minutes
20
Introduction: Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process and thus sensitive to hypoxia.
Methods: Using the modified Vannucci procedure, a clinically relevant animal model of neonatal hypoxia ischemia (HI), we characterized the profile of cholesterol and its sterol intermediates, along with the key enzymes on the cholesterol synthetic pathway over a time course of 5 days after HI in the postnatal day 10 mouse brain.
Results: Although the total cholesterol levels in the injured cortices appeared to be minimally attenuated at 5 days following HI, there was an overall repression of brain cholesterol biosynthesis. Lanosterol and the downstream sterols in both the Bloch and Kandutsch-Russell (K-R) pathways were consistently reduced for up to 3 days except for desmosterol, which was elevated. Correspondingly, protein expression of the controlling transcription factors sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1 was decreased at early time points (within 6 h), in parallel with the downregulation of several substrate enzymes for up to 5 days post-HI. HMG-CoA reductase (HMGCR), the first rate-limiting enzyme, was upregulated in the first 24 h after HI. The expression of 24-dehydrocholesterol reductase (DHCR24) that catalyzes the last step to produce cholesterol on the Bloch pathway and bridges the Bloch to K-R pathway was also augmented.
Conclusions: Our data suggest perturbed brain cholesterol biosynthesis following neonatal HI. As some sterol intermediates and enzymes have diverse functions in brain development and stress responses other than producing cholesterol, assessment of their dynamic changes after HI is important to understand the lipid responses in rodent HI models and to identify lipid-based targeted therapies in future studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179323 | PMC |
http://dx.doi.org/10.1159/000543254 | DOI Listing |
CNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDFJCI Insight
September 2025
The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children; Toronto, Canada.
More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China.
Cardiovascular disease is the leading global cause of mortality, affecting the development of cognitive impairment in the elderly. Lipid-lowering drugs are commonly used to manage cardiovascular disease risk, but their effects on cognitive performance have produced conflicting results in previous research. To better guide the selective decision-making and application of lipid-lowering drugs, this study aims to determine the causal relationship between lipid-lowering drugs and cognitive performance through Mendelian randomization.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
September 2025
Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Thrissur, Kerala, 680005, India. Electronic address:
7-Ketocholesterol (7-KC) is a biologically active oxysterol formed through the oxidation of cholesterol, predominantly under conditions of oxidative stress. It is generated both enzymatically in specific tissues such as the brain and liver, and non-enzymatically via reactive oxygen species (ROS), especially in aging tissues and heat-processed animal-derived foods. 7-KC exerts multifaceted effects on human health, extending beyond lipid metabolism to disrupt glucose and amino acid utilization, impair mitochondrial function, and provoke endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFArch Gerontol Geriatr
August 2025
China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Electronic address:
Post-stroke cognitive impairment (PSCI) imposes a significant economic and social burden on patients and their families. High-density lipoprotein cholesterol (HDL-C) is reported to have protective effects on cognitive function in older adults. This study assesses the effects of HDL-C during the acute period of stroke on PSCI.
View Article and Find Full Text PDF