98%
921
2 minutes
20
Background: Definitive chemoradiation is the primary treatment for locally advanced head and neck carcinoma (LAHNSCC). Optimising outcome predictions requires validated biomarkers, since TNM8 and HPV could have limitations. Radiomics may enhance risk stratification.
Methods: This single-centre observational study collected clinical data and baseline CT scans from 171 LAHNSCC patients treated with chemoradiation. The dataset was divided into training (80%) and test (20%) sets, with a 5-fold cross-validation on the training set. Researchers extracted 108 radiomics features from each primary tumour and applied survival analysis and classification models to predict progression-free survival (PFS) and 5-year progression, respectively. Performance was evaluated using inverse probability of censoring weights and c-index for the PFS model and AUC, sensitivity, specificity, and accuracy for the 5-year progression model. Feature importance was measured by the SHapley Additive exPlanations (SHAP) method and patient stratification was assessed through Kaplan-Meier curves.
Results: The final dataset included 171 LAHNSCC patients, with 53% experiencing disease progression at 5 years. The random survival forest model best predicted PFS, with an AUC of 0.64 and CI of 0.66 on the test set, highlighting 4 radiomics features and TNM8 as significant contributors. It successfully stratified patients into low and high-risk groups (log-rank p < 0.005). The extreme gradient boosting model most effectively predicted a 5-year progression, incorporating 12 radiomics features and four clinical variables, achieving an AUC of 0.74, sensitivity of 0.53, specificity of 0.81, and accuracy of 0.66 on the test set.
Conclusion: The combined clinical-radiomics model improved the standard TNM8 and clinical variables in predicting 5-year progression though further validation is necessary.
Key Points: Question There is an unmet need for non-invasive biomarkers to guide treatment in locally advanced head and neck cancer. Findings Clinical data (TNM8 staging, primary tumour site, age, and smoking) plus radiomics improved 5-year progression prediction compared with the clinical comprehensive model or TNM staging alone. Clinical relevance SHAP simplifies complex machine learning radiomics models for clinicians by using easy-to-understand graphical representations, promoting explainability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165904 | PMC |
http://dx.doi.org/10.1007/s00330-024-11301-6 | DOI Listing |
J Clin Oncol
September 2025
Division of Hematology and Medical Oncology, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX.
J Nat Prod
September 2025
Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, P. R. China.
Hamigerans, a class of diterpenoid natural products isolated from marine sponge , are characterized by distinctive 6-6-5 or 6-7-5 tricyclic skeletons. These compounds have been a focal point for synthetic chemists in recent years due to their remarkable biological activities. In this Review, we summarize the progress made in the isolation, biosynthesis, bioactivity, and total synthesis of hamigerans, with particular emphasis on synthetic studies published since 2013.
View Article and Find Full Text PDFJ Bras Pneumol
September 2025
. Departamento de Radiologia e Oncologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil.
Objective: Thymic tumors are a rare group of anterior mediastinal tumors. Surgery is the primary treatment. Adjuvant treatment is used in select cases.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, Hefei, Anhui 230026, China.
The multiplicity of orbitals in quantum systems significantly influences the competition between Kondo screening and local spin magnetization. The identification of orbital-specific processes is essential for advancing spintronic devices, as well as for enhancing the understanding of many-body quantum phenomena, but it remains a great challenge. Here, we use a combination of scanning tunneling microscopy/spectroscopy and electron spin resonance (ESR) spectroscopy to investigate single iron phthalocyanine (FePc) molecules on MgO/Ag(100).
View Article and Find Full Text PDF