98%
921
2 minutes
20
Atherosclerotic cardiovascular disease (ASCVD), the leading cause of mortality worldwide, is driven by endothelial cell inflammatory activation and counter-balanced by anti-inflammatory transcription factors Klf2 and Klf4 (Klf2/4). Understanding vascular endothelial inflammation to develop effective treatments is thus essential. Here, we identify, Polycomb Repressive Complex (PRC) 2, which blocks gene transcription by trimethylating histone3 Lysine27 in gene promoter/enhancers, as a potent, therapeutically targetable determinant of vascular inflammation and ASCVD progression. Bioinformatics identified PRC2 as a direct suppressor of Klf2/4 transcription. Klf2/4 transcription requires Notch signaling, which reverses PRC2 modification of Klf2/4 promoter/enhancers. PRC2 activity is elevated in human ASCVD endothelium. Treating mice with established ASCVD with tazemetostat, an FDA approved pharmacological inhibitor of PRC2, slowed plaque progression by 50% and drastically improved markers of plaque stability. This study elucidates a fundamental mechanism of vascular inflammation, thus identifying a potential method for treating ASCVD and possibly other vascular inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656509 | PMC |
http://dx.doi.org/10.1101/2024.12.02.626505 | DOI Listing |
Nucleic Acids Res
September 2025
Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.
EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
September 2025
Department of Gynecology, Pucheng County People's Hospital, Weinan, China.
Long non-coding RNAs (lncRNAs) are involved in the numerous types of tumors. The aim of this study is to comprehend the pathological mechanism of lncRNA CASC19 in ovarian cancer. CASC19, miR-761 and CBX2 expression in the samples was quantitatively detected by real-time quantitative polymerase chain reaction (RT-qPCR) reaction.
View Article and Find Full Text PDFPlant Sci
September 2025
Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM, México D.F 04510, Mexico. Electronic address:
Epigenetic regulation by Polycomb Group (PcG) is essential for controlling gene repression. In plants, PcG is involved in all developmental processes, from embryogenesis to floral development, including root development. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) has been described as a PcG component, capable of recognizing the H3K27me3 mark, that together with CLF, a PcG histone methyltransferase, represses gene expression.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Molecular Biology, Massachusetts General Hospital Research Institute, Massachusetts General Hospital, Boston, MA 02114, USA.
Opposing activities of conserved chromatin regulatory complexes, such as the Polycomb Repressive Complex 1 (PRC1) and the activating chromatin remodeler SWI/SNF play critical roles in regulating gene expression during development and differentiation. The mechanisms by which these complexes compete to regulate chromatin states remain poorly understood. We combine single-molecule analysis and genomic approaches in cultured cells to demonstrate that the condensate-forming properties of PRC1 play an important role in excluding SWI/SNF from chromatin.
View Article and Find Full Text PDFDev Cell
August 2025
Friedrich Miescher Institute for Biomedical Research, 4056 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland. Electronic address:
Except for regulatory CpG-island sequences, genomes of most mammalian cells are widely DNA-methylated. In oocytes, though, DNA methylation (DNAme) is largely confined to transcribed regions. The mechanisms restricting de novo DNAme in oocytes and their relevance thereof for zygotic genome activation and embryonic development are largely unknown.
View Article and Find Full Text PDF