98%
921
2 minutes
20
Gongju(Chrysanthemum morifolium) is one of the five major medicinal Chrysanthemum varieties included in the Chinese Pharmacopoeia. In recent years, its cultivation areas have changed significantly, resulting in mixed quality of the medicinal herbs. In this study, Gongju cultivated in Anhui, Yunnan, Chongqing, and other places were selected as research objects. Hyperspectral data were collected in the visible-near-infrared(VNIR) and short-wave infrared(SWIR) bands using different modes, such as corolla facing up(A) and flower base facing up(B). After pre-processing the hyperspectral data using five methods, including multiplicative scatter correction(MSC), Savitzky-Golay smoothing(SG), first derivative(D1), second derivative(D2), and standard normal variate(SNV), partial least squares discriminant analysis(PLSDA), random forest(RF), and support vector machine(SVM) were used to establish origin identification models of Gongju at the two geographical scales of the province and the city-county in Anhui province. The accuracy of the prediction results was used as an evaluation index to select the optimal models, and the classification performance of the models was evaluated by confusion matrix. The results showed that the flower base facing up(B) collection model combined with second derivative pretreatment and RF method was the best model for both geographical scale identification models. The modeling effect of the full-band(VNIR + SWIR) was slightly better than that of the single band, with the accuracy of the prediction set in the province and city-county regions reaching 99.69% and 99.40%, respectively. The competitive adaptive reweighted sampling algorithm(CARS), successive projections algorithm(SPA), and variable iterative space shrinkage approach(VISSA) were further used to screen the feature wavelength modeling. The number of feature wavelengths screened by CARS was fewer, and the prediction set accuracy of the two geographical scales models after optimization could reach 99.56% and 98.65%, which was basically comparable to the full-band model. However, the removal of redundant variables could greatly reduce the complexity of the model. The hyperspectral technology combined with the chemometrics model established in this study can achieve the origin identification of Gongju at different geographical scales, providing a theoretical basis and technical reference for the construction of a rapid detection system for Gongju origin and the development of exclusive miniaturized instrumentation and equipment systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20240814.101 | DOI Listing |
Wellcome Open Res
August 2025
Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA.
Arenaviruses and Hantaviruses, primarily hosted by rodents and shrews, represent significant public health threats due to their potential for zoonotic spillover into human populations. Despite their global distribution, the full impact of these viruses on human health remains poorly understood, particularly in regions like Africa, where data is sparse. Both virus families continue to emerge, with pathogen evolution and spillover driven by anthropogenic factors such as land use change, climate change, and biodiversity loss.
View Article and Find Full Text PDFJ Anim Ecol
September 2025
Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences, Technische Universität München, Freising, Germany.
Land-use change and intensification are major drivers of biodiversity loss, yet their effects on diversity have usually been studied within a single habitat type or land-use category, limiting our understanding of cross-habitat patterns. Moths, a species-rich taxon worldwide, represent a significant portion of the biodiversity in both temperate forests and grasslands, functioning as pollinators and herbivores. While increasing land-use intensity (LUI) in both habitats is expected to negatively impact moth assemblages, the strength of this effect remains uncertain.
View Article and Find Full Text PDFJ Behav Health Serv Res
September 2025
Department of Health Policy and Management, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, USA.
Telehealth is increasingly a standard and routine clinical option, indicating a changing outlook for SUD treatment from in-person to the more convenient option of telehealth. As populations across geographies increasingly prefer telehealth, more research is warranted that focuses on how where a person lives is associated with telehealth availability. The authors used the Mental Health and Addiction Treatment Tracking Repository (MATTR 2024) to identify telehealth availability among all known licensed SUD treatment facilities in the USA (N = 10,492 facilities).
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Psychiatry, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea.
Background: Autism spectrum disorder (ASD) and social communication disorder (SCD) are neurodevelopmental disorders characterized by deficits in social communication that hinder social adaptation, with limited pharmacological options for therapy owing to the absence of identified biomarkers. Individuals with ASD or SCD require lifelong interventions tailored to their development stages. However, most existing interventions primarily focus on early childhood, leaving adolescents relatively underserved.
View Article and Find Full Text PDFJ Environ Manage
September 2025
University of Maryland Center for Environmental Science, Annapolis, MD, USA.
River water quality degradation is a prevailing problem in coastal China with intensifying human-nature interaction. However, the spatial and temporal dynamics of water quality and their drivers remain poorly understood. In this study, we developed an analytical framework integrating self-organizing mapping (SOM) with partial least squares structural equation models (PLS-SEMs) to analyze the patterns and drivers of river water quality at 49 stations from 2021 to 2023 in Fujian Province, a coastal region in southeastern China.
View Article and Find Full Text PDF