Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoscale FeWO/BiVO heterojunctions were directly grown on the graphite fiber felt (GF) with good conductivity to construct a FeWO/BiVO @GF solar photo-Fenton like wastewater treatment system. The removal effect of COD from phenolic wastewater and the mechanism of synergistic improvement of wastewater treatment efficiency by this system were investigated. The FeWO/BiVO heterojunction prepared by hydrothermal method exhibited higher photoelectric conversion efficiency and solar light utilization rate, thus endowing FeWO/BiVO with excellent solar-Fenton like reaction activity.The photo-Fenton activity can be maintained well even within the pH range of 2-8. Loading FeWO/BiVO nano-heterojunction on GF helped to increase the contact area between Fenton reagents and wastewater, facilitate the electron transfer on the FeWO/BiVO heterojunction and enable the recovery and reuse of the Fenton reagents.Under solar light radiation, the COD removal efficiency of FeWO/BiVO @GF/HO system in phenolic wastewater was more than 92%. Even after five cycles, the system still exhibited excellent operation stability. FeWO/BiVO@GF promoted the conversion and cycling of Fe(III)/Fe(II) by accelerating the separation and transport of photogenerated electrons/holes and increasing the concentration of active species, thereby stimulating excellent solar photo-Fenton like activity.The results are significance to the development of green and efficient photo-Fenton process for advanced treatment of industrial wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143980DOI Listing

Publication Analysis

Top Keywords

phenolic wastewater
12
wastewater treatment
12
graphite fiber
8
fiber felt
8
solar photo-fenton
8
fewo/bivo heterojunction
8
solar light
8
wastewater
7
fewo/bivo
7
advanced solar
4

Similar Publications

Wastewater as a dual indicator of human and environmental exposure to synthetic antioxidants: Occurrence and fate in biological and advanced wastewater treatment.

Environ Int

August 2025

Eawag: Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092, Zurich, Switzerland. Electronic address:

Synthetic antioxidants (SAOs) are widely used additives in industrial and consumer products, yet their human exposure and fate throughout wastewater treatment remain poorly understood. This study investigates the occurrence of SAOs and their human metabolites in wastewater influent as well as their abatement in three wastewater treatment plants (WWTPs) employing both conventional and advanced treatment technologies. In vitro human liver S9 assays were performed to generate a SAO metabolite MS2 library containing over 2500 potential metabolites, which was matched against wastewater influent data.

View Article and Find Full Text PDF

Odor problems in treated municipal wastewater are a concern, yet the sources and formation dynamics of these compounds within sewerage systems remain unclear. 2,4,6-trichloroanisole (2,4,6-TCA) is a key odorant in the effluents of municipal wastewater treatment plants (WWTPs). This study investigates the formation of 2,4,6-TCA through the conversion of its precursor, 2,4,6-trichlorophenol (2,4,6-TCP).

View Article and Find Full Text PDF

The ultraviolet (UV) process is recognized as an environmentally friendly treatment, typically producing fewer byproducts compared to conventional chemical oxidation methods. However, research on the mechanisms underlying the removal of toxic effects by UV and UV-based combined processes during wastewater treatment remains insufficient. In this study, effect-based trigger values (EBTs) for acute toxicity, genotoxicity, and estrogen receptor (ER) agonist activity were derived and subsequently applied to assess three categories of toxicity variations in both full-scale wastewater treatment plants (WWTPs) and pilot-scale systems.

View Article and Find Full Text PDF

Conventional TiO₂ nanoparticle syntheses rely on high temperatures, toxic reagents and multi-step routes that impede scalability and sustainability. Here, we deliver the first green synthesis of TiO₂ nanoparticles (TiO₂ NPs) using polysaccharide- (42 mg GE g) and phenolic-rich (78 mg GAE g) Pinus patula leaf extract. GC-MS and LC-MS fingerprinting identify terpenoids, flavonoids and phenolic glycosides acting as simultaneous reducing, capping and stabilizing agents.

View Article and Find Full Text PDF

Electron transfer mediates position-dependent hydrolytic dichlorination during dichlorophenols biodegradation under nitrate-reducing conditions.

J Hazard Mater

September 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Engineering Research Centre of Chemical Pollution Control, Mini

Polychlorinated phenols (PCPs) are persistent pollutants due to strong C-Cl bonds and toxicity, posing challenges for bioremediation. Although electron acceptor activation can facilitate degradation, the effect of chlorine-substituent positions on isomer-specific biodegradability remains unclear. To address this gap, dichlorophenols (DCPs) were selected as chlorine substitution patterns shape degradation kinetics and microbial responses.

View Article and Find Full Text PDF