Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lignin serves as an ideal substrate for the synthesis of chemically functionalized hyper-cross-linked resins due to the structural composition of its aromatic rings, aliphatic side chains, and multiple active functional groups. These resins have shown to be highly effective in the adsorption of aromatic compounds. In this study, hyper-cross-linked polymer (HCPs-3), synthesized using 1,3,5-triphenyl and lignin, demonstrated a significant adsorption capacity for aniline, with a maximum adsorption capacity (q) of 189.2 mg/g at 303 K. This adsorption capacity reached equilibrium within 80 min, supporting the suitability of the pseudo-first-order rate model for kinetics analysis. The process benefited significantly from the high surface area and presence of abundant micro/mesopores. Acid-base interactions and hydrogen bonding were found to be crucial in enhancing the adsorption efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.138892 | DOI Listing |