Theophylline alleviates cyclophosphamide-induced T cell senescence by downregulating acetylation of p53 at lysine 373.

Int Immunopharmacol

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anesthesiology,

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyclophosphamide is a widely used immunosuppressive and chemotherapeutic agent in clinics. Previous studies have indicated that cyclophosphamide treatment induces cellular senescence in patients, although the underlying mechanisms remain elusive. Here, we reported that cyclophosphamide induced T cell senescence in the spleen of mice. Meanwhile, phosphoramide mustard cyclohexanamine (PM), an active metabolite of cyclophosphamide, triggered human T cell senescence. RNA sequencing analysis revealed that PM promoted senescence of primary human T cells through the activation of the p53 signaling pathway. Moreover, PM strongly increased the acetylation of p53 lysine 373 in T cells. Compared with the wild-type p53, mutating lysine 373 of p53 to arginine markedly reduced the p21 and p16 expression in PM treated Jurkat cells. Notably, we found that theophylline, an activator of histone deacetylase HDAC, ameliorated the senescence phenotype of both primary human T cells induced by PM and splenic T cells induced by cyclophosphamide in mice. Together, the results from current study could provide a potential strategy against cyclophosphamide-induced T cell senescence by inhibiting p53 acetylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113838DOI Listing

Publication Analysis

Top Keywords

cell senescence
16
lysine 373
12
cyclophosphamide-induced cell
8
acetylation p53
8
p53 lysine
8
primary human
8
human cells
8
cells induced
8
senescence
7
p53
6

Similar Publications

Anaphase-promoting complex/cyclosome (APC/C) regulates the cell cycle by destruction of target proteins ubiquitination. However, understanding the control of APC/C has remained elusive. We identify APC2, the catalytic core subunit of APC/C, as a binding partner of active regulator of SIRT1 (AROS).

View Article and Find Full Text PDF

[β-sitosterol, an important component in the fruits of Miq., prolongs lifespan of by suppressing the ferroptosis pathway].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Department of Pathogenic Biology & Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University. Haikou 571199, China.

Objectives: To elucidate the anti-aging effect of β-sitosterol (BS), an important component in the fruits of Miq., in and its regulatory effect on ETS-5 gene to modulate ferroptosis.

Methods: treated with 10 µg/mL BS were monitored for survival time and changes in body length, motility, and reproductive function.

View Article and Find Full Text PDF

Senescence-regulating agents remodel mesenchymal stem cell-schwann cell circuitry for diabetic bone regeneration.

Biomaterials

August 2025

Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator

Bone healing requires Schwann cells (SCs) paracrine factors for mesenchymal stem cell function. Diabetes mellitus (DM) patients are susceptible to developing SCs dysfunction and impairing bone healing. Rare research considered reconstructing mesenchymal stem cell-schwann cell circuitry in diabetic bone regeneration.

View Article and Find Full Text PDF

Background: Individuals born after intrauterine growth restriction (IUGR) have a higher risk of developing metabolic syndrome (MetS) in adulthood. In a rat model, male IUGR offspring exhibit MetS features-including elevated systolic blood pressure, glucose intolerance, non-alcoholic fatty liver disease, and increased visceral adipose tissue (VAT)-by 6 months of age. Female offspring, however, do not.

View Article and Find Full Text PDF

Tauroursodeoxycholic acid modulates neuroinflammation via STING/NF-κB inhibition after traumatic brain injury.

Int Immunopharmacol

September 2025

Department of Medical Science Research Center, Brain Injury and Drug Prevention Research Key Laboratory of Shaanxi Universities, Peihua University, Xi'an, Shaanxi 710125, China; Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie 551700, China; School of Life and Health Sc

The incidence of traumatic brain injury (TBI) has demonstrated a marked escalation recently. Nevertheless, there remains a critical paucity of effective drug interventions targeting persistent neuroinflammation-induced damage following TBI. STING/NF-κB axis-induced pyroptosis emerges as a pivotal mechanism driving persistent neuroinflammation, providing it as a potential target for multi-pathway precision therapeutic in TBI.

View Article and Find Full Text PDF