98%
921
2 minutes
20
Cyclophosphamide is a widely used immunosuppressive and chemotherapeutic agent in clinics. Previous studies have indicated that cyclophosphamide treatment induces cellular senescence in patients, although the underlying mechanisms remain elusive. Here, we reported that cyclophosphamide induced T cell senescence in the spleen of mice. Meanwhile, phosphoramide mustard cyclohexanamine (PM), an active metabolite of cyclophosphamide, triggered human T cell senescence. RNA sequencing analysis revealed that PM promoted senescence of primary human T cells through the activation of the p53 signaling pathway. Moreover, PM strongly increased the acetylation of p53 lysine 373 in T cells. Compared with the wild-type p53, mutating lysine 373 of p53 to arginine markedly reduced the p21 and p16 expression in PM treated Jurkat cells. Notably, we found that theophylline, an activator of histone deacetylase HDAC, ameliorated the senescence phenotype of both primary human T cells induced by PM and splenic T cells induced by cyclophosphamide in mice. Together, the results from current study could provide a potential strategy against cyclophosphamide-induced T cell senescence by inhibiting p53 acetylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2024.113838 | DOI Listing |
BMB Rep
September 2025
Department of Molecular Biology, Dankook University, Cheonan 31116, Korea.
Anaphase-promoting complex/cyclosome (APC/C) regulates the cell cycle by destruction of target proteins ubiquitination. However, understanding the control of APC/C has remained elusive. We identify APC2, the catalytic core subunit of APC/C, as a binding partner of active regulator of SIRT1 (AROS).
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Department of Pathogenic Biology & Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University. Haikou 571199, China.
Objectives: To elucidate the anti-aging effect of β-sitosterol (BS), an important component in the fruits of Miq., in and its regulatory effect on ETS-5 gene to modulate ferroptosis.
Methods: treated with 10 µg/mL BS were monitored for survival time and changes in body length, motility, and reproductive function.
Biomaterials
August 2025
Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
Bone healing requires Schwann cells (SCs) paracrine factors for mesenchymal stem cell function. Diabetes mellitus (DM) patients are susceptible to developing SCs dysfunction and impairing bone healing. Rare research considered reconstructing mesenchymal stem cell-schwann cell circuitry in diabetic bone regeneration.
View Article and Find Full Text PDFJ Nutr Biochem
September 2025
Department of Woman-Mother-Child, Division of Pediatrics, DOHaD Laboratory, University of Lausanne and Lausanne University Hospital, 1011 Lausanne, Switzerland. Electronic address:
Background: Individuals born after intrauterine growth restriction (IUGR) have a higher risk of developing metabolic syndrome (MetS) in adulthood. In a rat model, male IUGR offspring exhibit MetS features-including elevated systolic blood pressure, glucose intolerance, non-alcoholic fatty liver disease, and increased visceral adipose tissue (VAT)-by 6 months of age. Female offspring, however, do not.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Medical Science Research Center, Brain Injury and Drug Prevention Research Key Laboratory of Shaanxi Universities, Peihua University, Xi'an, Shaanxi 710125, China; Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie 551700, China; School of Life and Health Sc
The incidence of traumatic brain injury (TBI) has demonstrated a marked escalation recently. Nevertheless, there remains a critical paucity of effective drug interventions targeting persistent neuroinflammation-induced damage following TBI. STING/NF-κB axis-induced pyroptosis emerges as a pivotal mechanism driving persistent neuroinflammation, providing it as a potential target for multi-pathway precision therapeutic in TBI.
View Article and Find Full Text PDF