98%
921
2 minutes
20
Carbon-nanotube-modified biochar (CNT3-CBC) with a nanostructured surface was prepared by using cattle manure as the raw material via the impregnation method. This modified biochar was then used to adsorb petroleum and Ni(II) from aqueous solutions. Various physicochemical characterization techniques were employed, including SEM, BET analysis, FTIR, and XPS. Kinetic and isothermal adsorption characteristics were analyzed. The influence of different biochar dosages, solution pH levels, and number of adsorption cycles on the efficiency of removal of crude oil and Ni(II) was meticulously evaluated. Results indicated that modified biochar had a higher surface area, a greater number of surface functional groups, and higher interaction forces compared to biochar. Adsorption kinetics and isotherms showed that modified biochar had a strong adsorption capacity. The experimental data conformed closely to the Elovich, Langmuir, and Freundlich adsorption models, underscoring the significant contributions of both physical and chemical adsorption mechanisms. Competitive adsorption of modified biochar in the co-sorption of petroleum and nickel solutions exists, and the modified biochar demonstrated high capacities for crude oil and Ni(II) in the competitive adsorption. The modified biochar prepared at a pyrolysis temperature of 800°C exhibited a superior adsorption performance, and the adsorption capacities of crude oil and Ni(II) were 303.03 mg·g and 32.87 mg·g¹ , respectively. Modified biochar has better regeneration potential after crude oil and Ni(II) adsorption, with the removal efficiency remaining above 50 % in the fourth cycle. As an efficient and environmentally friendly adsorbent, modified biochar shows great potential for removing crude oil and Ni(II) pollutants from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2024.117557 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Environment and Geography, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China. Electronic address:
In this study, Fe-Ni-layered double hydroxide modified crayfish shell biochar substrate (Fe-Ni-LDH@CSBC) was successfully prepared and introduced into constructed wetland (CW) to research the Cr(VI) removal mechanism through substrate adsorption and microbial action. Adsorption experiments demonstrated the equilibrium adsorption capacities of Fe-Ni-LDH@CSBC for Cr(VI) could reach 1058.48 (C=10 mg/L) and 1394.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Regional and Urban Ecology, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, CAS Haixi Industrial Technology Innovation
Reactive oxygen species (ROS) are critical mediators of soil biogeochemical processes. While the production of ROS with biochar (BC) in the rhizosphere has not been explored. We demonstrate that BC and Fe-modified biochar (FeBC), prepared at 400°C and 600°C, influence ROS generation in paddy soil containing biodegradable (polybutylene succinate: PBS) and conventional (polystyrene) microplastics (MPs).
View Article and Find Full Text PDFSci Rep
September 2025
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia.
Maize (Zea mays L.), a globally significant cereal of the Poaceae family, plays a pivotal role in food and feed security. However, its productivity is increasingly threatened by climate-induced drought stress and low organic matter content of soil, particularly in arid and semi-arid regions.
View Article and Find Full Text PDFSci Rep
September 2025
School of Chemistry and Environment Engineering, Pingdingshan University, 467000, Pingdingshan, China.
Biochar is an excellent adsorbent for organic pollutants, but the removal effect for inorganic phosphorus is not satisfactory. In order to improve its phosphorus removal effect, ZnAl-LDH modified plane trees' bark biochar was presented in this paper. The plane trees' bark biochar was prepared by chemical-activation method by utilizing KCO as the activation agent.
View Article and Find Full Text PDF