Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Manual contour corrections during fractionated magnetic resonance (MR)-guided radiotherapy (MRgRT) are time-consuming. Conventional population models for deep learning auto-segmentation might be suboptimal for MRgRT at MR-Linacs since they do not incorporate manual segmentation from treatment planning and previous fractions.

Purpose: In this work, we investigate patient-specific (PS) auto-segmentation methods leveraging expert-segmented planning and prior fraction MR images (MRIs) to improve auto-segmentation on consecutive treatment days.

Materials And Methods: Data from 151 abdominal cancer patients treated at a 0.35 T MR-Linac (151 planning and 215 fraction MRIs) were included. Population baseline models (BMs) were trained on 107 planning MRIs for one-class segmentation of the aorta, bowel, duodenum, kidneys, liver, spinal canal, and stomach. PS models were obtained by fine-tuning the BMs using the planning MRI ( ). Maximal improvement by continuously updating the PS models was investigated by adding the first four out of five fraction MRIs ( ). Similarly, PS models without BM were trained ( and ). All hyperparameters were optimized using 23 patients, and the methods were tested on the remaining 21 patients. Evaluation involved Dice similarity coefficient (DSC), average ( ) and the 95 percentile (HD) Hausdorff distance. A qualitative contour assessment by a radiation oncologist was performed for BM, , and .

Results: and networks had the best geometric performance. and BMs showed similar DSC and HDs values, however models outperformed BMs. predictions scored the best in the qualitative evaluation, followed by the BMs and  models.

Conclusion: Personalized auto-segmentation models outperformed the population BMs. In most cases, delineations were judged to be directly usable for treatment adaptation without further corrections, suggesting a potential time saving during fractionated treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972049PMC
http://dx.doi.org/10.1002/mp.17580DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning auto-segmentation
8
models
8
auto-segmentation models
8
fractionated magnetic
8
fraction mris
8
models outperformed
8
bms
6
auto-segmentation
5
planning
5

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Few-shot learning for highly accelerated 3D time-of-flight MRA reconstruction.

Magn Reson Med

September 2025

Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.

Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF