A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluating Chemical Transport and Machine Learning Models for Wildfire Smoke PM: Implications for Assessment of Health Impacts. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Growing wildfire smoke represents a substantial threat to air quality and human health. However, the impact of wildfire smoke on human health remains imprecisely understood due to uncertainties in both the measurement of exposure of population to wildfire smoke and dose-response functions linking exposure to health. Here, we compare daily wildfire smoke-related surface fine particulate matter (PM) concentrations estimated using three approaches, including two chemical transport models (CTMs): GEOS-Chem and the Community Multiscale Air Quality (CMAQ) and one machine learning (ML) model over the contiguous US in 2020, a historically active fire year. In the western US, compared against surface PM measurements from the US Environmental Protection Agency (EPA) and PurpleAir sensors, we find that CTMs overestimate PM concentrations during extreme smoke episodes by up to 3-5 fold, while ML estimates are largely consistent with surface measurements. However, in the eastern US, where smoke levels were much lower in 2020, CTMs show modestly better agreement with surface measurements. We develop a calibration framework that integrates CTM- and ML-based approaches to yield estimates of smoke PM concentrations that outperform individual approach. When combining the estimated smoke PM concentrations with county-level mortality rates, we find consistent effects of low-level smoke on mortality but large discrepancies in effects of high-level smoke exposure across different methods. Our research highlights the differences across estimation methods for understanding the health impacts of wildfire smoke and demonstrates the importance of bench-marking estimates with available surface measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c05922DOI Listing

Publication Analysis

Top Keywords

wildfire smoke
20
surface measurements
16
smoke
11
chemical transport
8
machine learning
8
health impacts
8
air quality
8
human health
8
smoke concentrations
8
wildfire
6

Similar Publications