A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effects of FGFR2b-ligand signaling on pancreatic branching morphogenesis and postnatal islet function. | LitMetric

Effects of FGFR2b-ligand signaling on pancreatic branching morphogenesis and postnatal islet function.

J Mol Histol

National Clinical Research Center for Ocular Disease, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, 325027, Zhejiang, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pancreatic development is a complex process vital for maintaining metabolic balance, requiring intricate interactions among different cell types and signaling pathways. Fibroblast growth factor receptors 2b (FGFR2b)-ligands signaling from adjacent mesenchymal cells is crucial in initiating pancreatic development and differentiating exocrine and endocrine cells through a paracrine mechanism. However, the precise critical time window that affects pancreatic development remains unclear. To explore the roles of FGFR2b-ligands and identify the narrow window of time during which FGFR2b-ligand signaling affects pancreatic development, we used an inducible mouse model to control the expression of soluble dominant-negative FGFR2b (sFGFR2b) at various stages of pancreatic development. Our findings revealed a significant effect of FGFR2b-ligand signaling on epithelial morphology, lumen formation, and pancreatic branching during primary and secondary transition stages. Additionally, sFGFR2b expression reduced the number of Pdx1+ progenitor cells and altered the pancreatic islet structure. Furthermore, we examined the effect of mutation in FGF10, an FGFR2b ligand, on embryonic pancreatic β-cell function. FGF10 null mutant embryos exhibited reduced pancreatic size and a decrease number of islet-like structure. Although neonatal mice with haploinsufficiency for FGF10 exhibited abnormal glucose tolerance test results, indicating a potential diabetes predisposition, these abnormalities normalized with age, aligning with observations in wild type mice. Our study underscores the critical role of FGFR2b-ligand signaling in pancreatic development and postnatal islet function, offering insights into potential therapeutic targets for pancreatic disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-024-10328-9DOI Listing

Publication Analysis

Top Keywords

pancreatic development
24
fgfr2b-ligand signaling
16
pancreatic
12
signaling pancreatic
12
pancreatic branching
8
postnatal islet
8
islet function
8
signaling
6
development
6
effects fgfr2b-ligand
4

Similar Publications