Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Stretchable fibers with high conductivity are vital components for smart textiles and wearable electronics. However, embedding solid conductive materials in polymers significantly reduces conductive pathways when stretched, causing a sharp drop in conductivity. Here, a stretchable metastructured fiber with dynamic liquid metal-microfiber interlocking interface is reported to realize highly conductive yet ultrastable conductance. The Cu-EGaIn mixture is partially embedded within the porous microfiber mat, thereby enabling its roll-up into a spiral-layered metastructured fiber with self-compensating conductive pathways. The metastructured fiber shows outstanding performance, including high conductivity of 1.5 × 10 S m, large stretchability up to 629%, and ultrastable conductance with only 16% relative resistance change at 100% strain, which far surpasses the theoretical value. Moreover, these fibers have served as versatile platforms for wearable temperature-visualizing electrothermal fiber heaters and fully stretchable smart sensing-display fabrics. This dynamic solid-liquid interfacial interlocking strategy is promising for stretchable electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202415268 | DOI Listing |