The use of patient-derived xenografts and patient-derived organoids in the search for new therapeutic regimens for pancreatic carcinoma. A review.

Biomed Pharmacother

3rd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of General Surgery, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic. Electronic address:

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Patient-derived organoids (PDOs) and xenografts (PDXs) are powerful tools for personalized medicine in pancreatic cancer (PC) research. This study explores the complementary strengths of PDOs and PDXs in terms of practicality, genetic fidelity, cost, and labor considerations. Among other models like 2D cell cultures, spheroids, cancer-on-chip systems, cell line-derived xenografts (CDX), and genetically engineered mouse models (GEMMs), PDOs and PDXs uniquely balance genetic fidelity and personalized medicine potential, offering distinct advantages over the simplicity of 2D cultures and the advanced, but often resource-intensive, GEMMs and cancer-on-chip systems. PDOs excel in high-throughput drug screening due to their ease of use, lower cost, and shorter experimental timelines. However, they lack a complete tumor microenvironment. Conversely, PDXs offer a more complex microenvironment that closely reflects patient tumors, potentially leading to more clinically relevant results. Despite limitations in size, number of specimens, and engraftment success, PDXs demonstrate significant concordance with patient responses to treatment, highlighting their value in personalized medicine. Both models exhibit significant genetic fidelity, making them suitable for drug sensitivity testing. The choice between PDOs and PDXs depends on the research focus, resource availability, and desired level of microenvironment complexity. PDOs are advantageous for high-throughput screening of a diverse array of potential therapeutic agents due to their relative ease of culture and scalability. PDXs, on the other hand, offer a more physiologically relevant model, allowing for a comprehensive evaluation of drug efficacy and mechanisms of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117750DOI Listing

Publication Analysis

Top Keywords

personalized medicine
12
pdos pdxs
12
genetic fidelity
12
patient-derived organoids
8
cancer-on-chip systems
8
pdxs
7
pdos
6
patient-derived xenografts
4
xenografts patient-derived
4
organoids search
4

Similar Publications

Parasitology of the twenty-first century: are we moving in the right direction?

J Med Microbiol

September 2025

Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.

For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.

View Article and Find Full Text PDF

Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.

View Article and Find Full Text PDF

Retinol binding protein 4 (RBP4), the circulating carrier of retinol, complexes with transthyretin (TTR) and is a potential biomarker of cardiometabolic disease. However, RBP4 quantitation relies on immunoassays and Western blots without retinol and TTR measurement. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous absolute quantitation of circulating RBP4 and TTR is critical to establishing their biomarker potential.

View Article and Find Full Text PDF

Importance: This study represents a first successful use of a genetic biomarker to select potential responders in a prospective study in psychiatry. Liafensine, a triple reuptake inhibitor, may become a new precision medicine for treatment-resistant depression (TRD), a major unmet medical need.

Objective: To determine whether ANK3-positive patients with TRD benefit from a 1-mg and/or 2-mg daily oral dose of liafensine, compared with placebo, in a clinical trial.

View Article and Find Full Text PDF

Oral immunotherapy in children with allergic diseases: past, present and future.

Minerva Pediatr (Torino)

September 2025

Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy.

Allergen immunotherapy (AIT) is the only treatment capable of modifying the natural history of allergic diseases by promoting immune tolerance. Initially developed for respiratory allergies, AIT has expanded to include food allergies, particularly through oral immunotherapy (OIT). This review explores the historical evolution, current applications, and future directions of AIT in pediatric patients.

View Article and Find Full Text PDF