Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The past decade witnessed substantial discoveries related to the psychosis spectrum. Many of these discoveries resulted from pursuits of objective and quantifiable biomarkers in tandem with the application of analytical tools such as machine learning. These approaches provided exciting new insights that significantly helped improve precision in diagnosis, prognosis, and treatment. This article provides an overview of how machine learning has been employed in recent biomarker discovery research in the psychosis spectrum, which includes schizophrenia, schizoaffective disorders, bipolar disorder with psychosis, first episode psychosis, and clinical high risk for psychosis. It highlights both human and animal model studies and explores a varying range of the most impactful biomarkers including cognition, neuroimaging, electrophysiology, and digital markers. We specifically highlight new applications and opportunities for machine learning to impact noninvasive symptom monitoring, prediction of future diagnosis and treatment outcomes, integration of new methods with traditional clinical research and practice, and personalized medicine approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649307PMC
http://dx.doi.org/10.1016/j.bionps.2024.100107DOI Listing

Publication Analysis

Top Keywords

machine learning
16
psychosis spectrum
12
biomarker discovery
8
psychosis
6
machine
4
discovery machine
4
learning
4
learning psychosis
4
spectrum decade
4
decade witnessed
4

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF