Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Four to eight percent of patients with head and neck cancer will develop osteoradionecrosis of the jaw (ORNJ) after radiotherapy. Various radiation-induced tissue injuries are associated with reactive oxygen and nitrogen species (RONS) overproduction. Herein, Fe doping is used in VO (Fe-VO) nanozymes with multienzyme activities for ORNJ treatment via RONS scavenging. Fe doping can induce structure reconstruction of nanozymes with abundant defect production, including Fe substitution and oxygen vacancies (OVs), which markedly increased multiple enzyme-mimicking activity. Catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) enzyme-like performance of Fe-VO can effectively reprogram jawbone microenvironment to restore mitochondrial dysfunction and enhance mitophagy. Moreover, the surface plasmon resonance (SPR) effect of Fe-VO made it a good photothermal nanoagents for inhibiting jaw infection. Thus, this work demonstrated that Fe-VO nanozymes can efficiently scavenge RONS, activate mitophagy, and inhibit bacteria, which is potential for ORNJ treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809426 | PMC |
http://dx.doi.org/10.1002/advs.202413215 | DOI Listing |