A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Projectile Penetration into Calcareous Sand Subgrade Airport Runway Pavement with Genetic Algorithm Optimization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As an important civil and military infrastructure, airport runway pavement is faced with threats from cluster munitions, since it is vulnerable to projectile impacts with internal explosions. Aiming at the damage assessment of an island airport runway pavement under impact, this work dealt with discrete modeling of rigid projectile penetration into concrete pavement and the calcareous sand subgrade multi-layer structure. First, the Discrete Element Method (DEM) is introduced to model concrete and calcareous sand granular material features, like cohesive fracture and strain hardening due to compression, with mesoscale constitutive laws governing the normal and shear interactions between adjacent particles. Second, the subsequent DEM simulations of uniaxial and triaxial compression were performed to calibrate the DEM parameters for pavement concrete, as well as subgrade calcareous sand. Prior to the multi-layer structure investigations, penetration into sole concrete or calcareous sand is validated in terms of projectile deceleration and depth of penetration (DOP) with relative error ≤ 5.6% providing a reliable numerical tool for deep penetration damage assessments. Third, projectile penetration into the airport runway structure with concrete pavement and calcareous sand subgrade was evaluated with validated DEM model. Penetration numerical simulations with various projectile weight, pavement concrete thickness as well as striking velocity, were performed to achieve the DOP. Moreover, the back-propagation (BP) neural network proxy model was constructed to predict the airport runway penetration data with good agreement realizing rapid and robust DOP forecasting. Finally, the genetic algorithm was coupled with the proxy model to realize intelligent optimization of pavement penetration, whereby the critical velocity projectile just perforates concrete pavement indicating the severest subsequent munition explosion damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642444PMC
http://dx.doi.org/10.3390/ma17235696DOI Listing

Publication Analysis

Top Keywords

calcareous sand
24
airport runway
20
projectile penetration
12
sand subgrade
12
runway pavement
12
concrete pavement
12
pavement
9
genetic algorithm
8
penetration
8
pavement calcareous
8

Similar Publications