Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

() double-stranded RNA binding (DRB) proteins DRB1, DRB2 and DRB4 perform essential roles in microRNA (miRNA) production, with many of the produced miRNAs mediating aspects of the molecular response of to abiotic stress. Exposure of the , and mutants to mannitol stress showed to be the most sensitive to this form of osmotic stress. Profiling of the miRNA landscapes of mannitol-stressed , and seedlings via small RNA sequencing, and comparison of these to the profile of mannitol-stressed wild-type plants, revealed that the ability of the and mutants to mount an appropriate miRNA-mediated molecular response to mannitol stress was defective. RT-qPCR was next used to further characterize seven miRNA/target gene expression modules, with this analysis identifying DRB1 as the primary DRB protein required for miR160, miR164, miR167 and miR396 production. In addition, via its antagonism of DRB1 function, DRB2 was shown by RT-qPCR to play a secondary role in regulating the production of these four miRNAs. This analysis further showed that DRB1, DRB2 and DRB4 are all required to regulate the production of miR399 and miR408, and that DRB4 is the primary DRB protein required to produce the non-conserved miRNA, miR858. Finally, RT-qPCR was used to reveal that each of the seven characterized miRNA/target gene expression modules responded differently to mannitol-induced osmotic stress in each of the four assessed lines. In summary, this research has identified mannitol-stress-responsive miRNA/target gene expression modules that can be molecularly manipulated in the future to generate novel lines with increased tolerance to this form of osmotic stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11641234PMC
http://dx.doi.org/10.3390/ijms252312562DOI Listing

Publication Analysis

Top Keywords

osmotic stress
16
drb1 drb2
12
drb2 drb4
12
molecular response
12
mirna/target gene
12
gene expression
12
expression modules
12
drb4 required
8
appropriate mirna-mediated
8
mirna-mediated molecular
8

Similar Publications

In this article, "Cosmosis" introduces a newly coined metaphorical term that illustrates conceptual parallels between the physiological process of osmosis and the expansive dynamics of the cosmos. Designed as an interdisciplinary teaching framework, Cosmosis provides a novel way to link cellular homeostasis with cosmological principles such as entropy, spacetime curvature, and dark energy. By drawing on core physiological terms such as concentration gradients, osmotic pressure, aquaporins, and membrane selectivity, Cosmosis offers an analogy that may spark curiosity, support integrative thinking, and encourage cross-disciplinary dialogue in physiology and biochemistry education.

View Article and Find Full Text PDF

Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.

View Article and Find Full Text PDF

Regulation of Oomycete Autophagy, Lipid Droplet Accumulation and Pathogenesis by Three Rab GTPases.

Mol Plant Pathol

September 2025

National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.

Among eukaryotes, Rab GTPases are critical for intracellular membrane trafficking and possess various functions. Oomycetes, responsible for many devastating plant diseases, pose a significant threat to global agriculture. However, the functions of Rab GTPases in oomycetes are largely uncharted.

View Article and Find Full Text PDF

Thermosensitive transient receptor potential channel proteins: Emerging targets for acute lung injury: A review.

Int J Biol Macromol

September 2025

College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. Electronic address:

The thermosensitive transient receptor potential (Thermo-TRP) channel proteins comprise TRPA1, TRPV1-V4, and TRPM8. TRP channels are mainly situated on cellular surfaces and react to a range of external factors, including heat, cold, acidity, osmotic pressure, chemical signals, and flavors, as well as intracellular signals such as Ca, Na, and cytokines. The thermo-TRP channels are associated with many physiological signal pathways, with their distinct molecular structure making them promising drug targets for respiratory diseases.

View Article and Find Full Text PDF

In situ rapid gelation and osmotic dehydration-assisted preparation of graphene aerogel and its application in piezoresistive sensors.

J Colloid Interface Sci

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:

This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.

View Article and Find Full Text PDF