A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Theoretical Study of Extensive Hydrogen Abstraction Reactions for 2-Hydroxyethylhydrazine (HEH). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Energetic ionic liquids have a high potential to replace the traditional monopropellant hydrazine as a high-energy green propellant and can be widely used in aerospace technology. A high-energy ionic liquid─HEHN has also gained extensive attention from researchers. To explore the reaction mechanism of HEHN and establish a chemical kinetic model for high-energy ionic liquid propellants, 28 hydrogen abstraction reactions of HEH, which is the main decomposition product of HEHN, were investigated in this study. Seven abstractors were involved, including H, OH, NO, HO, CH, CHO, and CHO. In the case of calculations, the M06-2/6311++G(d,p) approach was utilized for geometry optimization, determination of vibrational frequencies, and dihedral scans. The CCSD/cc-pVXZ (X = T, Q) level of theory was used to calculate the single-point energies (SPEs). The rate coefficients of all 28 reactions and the thermochemical parameters of all involved species were determined. The results indicate that the rate of hydrogen abstraction at the -NH site is faster than that at other sites at relatively low temperatures. For all four abstraction sites, HEH + H, OH, and CHO have higher reaction rates than HEH + CHO and HO. In particular, NO systems at the -NH and -NH sites even begin to show higher reactivity than the H, OH, and CHO systems when the temperature is above ∼1100 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c07404DOI Listing

Publication Analysis

Top Keywords

hydrogen abstraction
12
abstraction reactions
8
high-energy ionic
8
heh cho
8
cho systems
8
cho
5
theoretical study
4
study extensive
4
extensive hydrogen
4
abstraction
4

Similar Publications