A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High-Performance Pure Water-Fed Anion Exchange Membrane Water Electrolysis with Patterned Membrane via Mechanical Stress and Hydration-Mediated Patterning Technique. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite rapid advancements in anion exchange membrane water electrolysis (AEMWE) technology, achieving pure water-fed AEMWE remains critical for system simplification and cost reduction. Under pure water-fed conditions, electrochemical reactions occur solely at active sites connected to ionic networks. This study introduces an eco-friendly patterning technique leveraging membrane swelling properties by applying mechanical stress during dehydration under fixed constraints. The method increases active sites by creating additional hydroxide ion pathways at the membrane-electrode interface, eliminating the need for additional ionomers in the electrode. This innovation facilitates ion conduction via locally shortened pathways. Membrane electrode assemblies (MEAs) with patterned commercial membranes demonstrated significantly improved performance and durability compared to MEAs with conventional catalyst-coated substrates and flat membranes under pure water-fed conditions. The universal applicability of this technique was confirmed using in-house fabricated anion exchange membranes, achieving exceptional current densities of 13.7 A cm at 2.0 V in 1.0 M potassium hydroxide (KOH) and 2.8 A cm at 2.0 V in pure water at 60 °C. Furthermore, the scalability of the technique was demonstrated through successful fabrication and operation of large-area cells. These findings highlight the potential of this patterning method to advance AEMWE technology, enabling practical applications under pure water-fed conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792040PMC
http://dx.doi.org/10.1002/advs.202409563DOI Listing

Publication Analysis

Top Keywords

pure water-fed
20
anion exchange
12
water-fed conditions
12
exchange membrane
8
membrane water
8
water electrolysis
8
mechanical stress
8
patterning technique
8
aemwe technology
8
active sites
8

Similar Publications