98%
921
2 minutes
20
The increasing availability of whole-genome sequencing (WGS) has begun to elucidate the contribution of rare variants (RVs), both coding and non-coding, to complex disease. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most are restricted to per-gene models and do not fully leverage the availability of variant-level functional annotations. We propose Genome-wide Rare Variant EnRichment Evaluation (gruyere), a Bayesian probabilistic model that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease (AD) Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify AD-associated genes and annotations. Growing evidence suggests that disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not had sufficient power to examine rare non-coding effects that incorporate such cell-type specific information. To address this gap, we 1) use predicted enhancer and promoter regions in microglia and other potentially relevant cell types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding RV test sets and 2) include cell-type specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 15 significant genetic associations not detected by other RV methods and finds deep learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a novel and robust framework incorporating functional annotations, coding RVs, and cell-type associated non-coding RVs, to perform genome-wide association tests, uncovering AD-relevant genes and annotations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643288 | PMC |
http://dx.doi.org/10.1101/2024.12.06.24318577 | DOI Listing |
Mar Biotechnol (NY)
September 2025
Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, China.
Epinephelus tukula is an economically important aquaculture animal, and a major parent in grouper crossbreeding. To better preserve and exploit E. tukula germplasm resources, a core collection (containing 34 individuals derived from 10 genetic groups) was first constructed based on phenotypic growth traits and whole-genome resequencing (WGS) data.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.
A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.
View Article and Find Full Text PDFmSystems
September 2025
Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
A significant challenge in the field of microbiology is the functional annotation of novel genes from microbiomes. The increasing pace of sequencing technology development has made solving this challenge in a high-throughput manner even more important. Functional metagenomics offers a sequence-naive and cultivation-independent solution.
View Article and Find Full Text PDFCrit Rev Microbiol
September 2025
Chemistry Department, SUNY College of Environmental Science and Forestry, Syracuse, NY, USA.
The metalloid tellurium (Te) is toxic to bacteria; however, the element is also extremely rare. Thus, most bacteria will never encounter Te in their environment. Nonetheless significant research has been performed on bacterial Te resistance because of the medical applications of the element.
View Article and Find Full Text PDFBiotechnol Appl Biochem
September 2025
Emergency Intensive Care Medicine Center, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China.
Background: Differentially expressed genes (DEGs) have been known to provide important information on disease mechanisms and potential therapeutic targets. The traditional Chinese medicine (TCM) offers a large reservoir of bioactive compounds that could modulate at these targets. This study is an attempt to investigate the biomarkers in Sepsis and COVID-19 using gene expression analysis and molecular modeling validation of TCM-derived candidate compounds targeting key DEGs associated with sepsis.
View Article and Find Full Text PDF