Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: It is known that ferroptosis promotes hepatic stellate cells (HSCs) inactivation. Arachidonate 15-Lipoxygenase (ALOX15), a ferroptosis driver gene, participates in disease progression.

Purpose: Dihydrotanshinone I (DHI), an active compound from Salvia miltiorrhiza, effectively regulates HSC inactivation. Nonetheless, there still needs to be clear understanding of how DHI affects HSC ferroptosis.

Methods: This study primarily investigates DHI's protective effects on liver fibrosis in vivo and in vitro. Additionally, we explored the molecular mechanisms by which DHI promotes ferroptosis in HSCs. The relationship between ALOX15 level and methylation was examined. Molecular docking was performed to confirm the targeting between early growth response protein 1 (EGR1) and DHI.

Results: DHI exhibited a mitigating effect on liver fibrosis in vivo. DHI-induced inactivation of HSC by promoting ferroptosis, accompanied by an elevation in intracellular iron and reactive oxygen species (ROS) levels. Results of transcriptome sequencing and quantitative real-time PCR (qRT-PCR) confirmed the elevation of ALOX15 (a ferroptosis driver gene) in HSCs with DHI. Loss of ALOX15 inhibited DHI-induced ferroptosis. Interestingly, DNA methyltransferase 1 (DNMT1), an essential DNA methyltransferase, was downregulated by DHI. Overexpression of DNMT1 resulted in decreased ALOX15 expression in cells with DHI. Notably, transcription factor EGR1 was demonstrated to regulate DNMT1 expression. EGR1 deficiency led to an increase in DNMT1 expression, which inhibited DHI-induced ferroptosis. Molecular docking confirmed that EGR1 could serve as a direct pharmacological target of DHI.

Conclusion: DHI upregulates EGR1 level, leading to decreased DNMT1 expression and increased ALOX15 demethylation, thereby promoting HSC ferroptosis and inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.113827DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
12
dnmt1 expression
12
hepatic stellate
8
stellate cells
8
ferroptosis
8
alox15 ferroptosis
8
ferroptosis driver
8
driver gene
8
dhi
8
fibrosis vivo
8

Similar Publications

Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.

View Article and Find Full Text PDF

Background And Aims: Gut-liver axis has been implicated in the pathophysiology of cirrhosis due to metabolic dysfunction-associated steatotic liver disease (MASLD), an in vitro model for studying epithelial gut dysfunction in MASLD is lacking. In this study, we aimed to characterise intestinal organoids derived from subjects with MASLD.

Materials And Methods: Intestinal organoids were obtained from duodenal samples of individuals with non-fibrotic MASLD and with MASLD-cirrhosis.

View Article and Find Full Text PDF

Objective: To determine the cumulative incidence of overall and cause-specific mortality among Queensland residents admitted to hospital with cirrhosis during 2007-22, by cirrhosis aetiology.

Study Design: Retrospective cohort study; analysis of linked Queensland Hospital Admitted Patient Data Collection and Queensland Registry of Births, Deaths and Marriages data.

Setting, Participants: Adult Queensland residents (18 years or older) admitted to Queensland hospitals with cirrhosis during 1 July 2007 - 31 December 2022.

View Article and Find Full Text PDF

Agranulocytosis is an extremely rare but potentially fatal immune-related adverse event (irAE) induced by immune checkpoint inhibitors (ICIs). Its management, particularly following combination therapies such as durvalumab/tremelimumab (Dur/Tre) for hepatocellular carcinoma (HCC), is challenging owing to limited data. We herein report a 79-year-old man with HCC who developed severe Dur/Tre-induced agranulocytosis that was refractory to granulocyte colony-stimulating factor, high-dose corticosteroids, and intravenous immunoglobulin.

View Article and Find Full Text PDF