Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity.

Int J Biol Macromol

Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathemat

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells. In this study, we explored the molecular mechanisms underlying DNA sensing by investigating the relationship between mRNA and protein expression levels and the STING pathway using single-cell analysis. We observed that reporter gene expression was dose-nonlinear after transfection of pDNA in cells with intact DNA-sensing pathways. Moreover, blocking the STING pathway in THP-1 cells significantly downregulated innate immune responses, upregulated exogenous gene expression, and mitigated the effects of innate immune responses on cell and gene function, but did not affect the proportion of reporter protein-positive cells. We elucidated the mechanisms of DNA sensing-induced innate immune response and cell death by analyzing heterozygous cellular responses to DNA transfection and transcriptome changes in positive cells. These findings suggest that the regulation of STING-mediated nucleic acid-sensing pathways is crucial for the accuracy of gene function studies and could enhance the efficacy of gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138752DOI Listing

Publication Analysis

Top Keywords

innate immune
16
gene function
12
immune responses
12
function studies
8
sting pathway
8
gene expression
8
gene
6
dna
5
cells
5
transcriptomic landscapes
4

Similar Publications

Heat Stress Drives Rapid Viral and Antiviral Innate Immunity Activation in Hexacorallia.

Mol Ecol

September 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.

The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.

View Article and Find Full Text PDF

Mechanisms underlying cardiovascular, affective, and metabolic (CAM) multimorbidity are incompletely defined. We assessed how two risk factors-chronic stress (CS) and a Western diet (WD)-interact to influence cardiovascular function, resilience, adaptability, and allostatic load (AL); explore pathway involvement; and examine relationships with behavioral, metabolic, and systemic AL. Male C57Bl/6 mice (8 weeks old, n = 64) consumed a control (CD) or WD (12%-65%-23% or 32%-57%-11% calories from fat-carbohydrate-protein) for 17 weeks, with half subjected to 2 h daily restraint stress over the final 2 weeks (CD + CS and WD + CS).

View Article and Find Full Text PDF

Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.

Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.

View Article and Find Full Text PDF

Biomechanic regulation of neutrophil extracellular traps in the cardiovascular system.

Trends Immunol

September 2025

Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:

Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.

View Article and Find Full Text PDF

The fraction that the elderly represent in the world's population is growing rapidly; numerous alterations that impact all organs and systems, including the immune system, are related to aging. A complex process common in the elderly, known as immunosenescence, is characterized by a decreased ability to respond to vaccination as well as an increased risk of bacterial and viral infections, autoimmune, cardiovascular and neurodegenerative diseases. These processes are associated with alterations in the innate and adaptive immune system and lead to a condition of chronic low-grade inflammation, referred to as inflammaging.

View Article and Find Full Text PDF