Gpmb-yolo: a lightweight model for efficient blood cell detection in medical imaging.

Health Inf Sci Syst

College of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004 China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the field of biomedical science, blood cell detection in microscopic images is crucial for aiding physicians in diagnosing blood-related diseases and plays a pivotal role in advancing medicine toward more precise and efficient treatment directions. Addressing the time-consuming and error-prone issues of traditional manual detection methods, as well as the challenge existing blood cell detection technologies face in meeting both high accuracy and real-time requirements, this study proposes a lightweight blood cell detection model based on YOLOv8n, named GPMB-YOLO. This model utilizes advanced lightweight strategies and PGhostC2f design, effectively reducing model complexity and enhancing detection speed. The integration of the simple parameter-free attention mechanism (SimAM) significantly enhances the model's feature extraction ability. Furthermore, we have designed a multidimensional attention-enhanced bidirectional feature pyramid network structure, MCA-BiFPN, optimizing the effect of multi-scale feature fusion. And use genetic algorithms for hyperparameter optimization, further improving detection accuracy. Experimental results validate the effectiveness of the GPMB-YOLO model, which realized a 3.2% increase in mean Average Precision (mAP) compared to the baseline YOLOv8n model and a marked reduction in model complexity. Furthermore, we have developed a blood cell detection system and deployed the model for application. This study serves as a valuable reference for the efficient detection of blood cells in medical images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632753PMC
http://dx.doi.org/10.1007/s13755-024-00285-8DOI Listing

Publication Analysis

Top Keywords

blood cell
20
cell detection
20
detection
9
model
8
gpmb-yolo model
8
model complexity
8
blood
6
cell
5
gpmb-yolo lightweight
4
lightweight model
4

Similar Publications

Correction: Factors Affecting the Receptiveness of Chinese Internists and Surgeons Toward Artificial Intelligence-Driven Drug Prescription: Protocol for a Systematic Survey Study.

JMIR Res Protoc

September 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

[This corrects the article DOI: .].

View Article and Find Full Text PDF

The hallmarks of mechanosensitive ion channels have been observed for half a century in various cell lines, although their mechanisms and molecular identities remained unknown until recently. Identification of the bona fide mammalian mechanosensory Piezo channels resulted in an explosion of research exploring the translation of mechanical cues into biochemical signals and dynamic cell morphology responses. One of the Piezo isoforms - Piezo1 - is integral in the erythrocyte (red blood cell; RBC) membrane.

View Article and Find Full Text PDF

Objective: Aim: The purpose was to identify the morphological features of the great saphenous vein in patients with chronic venous disease of the lower extremities undergoing treatment with endovenous high-frequency electric welding in automatic mode, endovenous laser ablation, and ultrasound-guided microfoam sclerotherapy.

Patients And Methods: Materials and Methods: The material for the comprehensive morphological study consisted of fragments of the great saphenous vein obtained from 32 patients with chronic venous disease of the lower extremities. The material was divided into three groups according to the endovenous treatment techniques applied.

View Article and Find Full Text PDF

Objective: Aim: To evaluate clinical applicability of immune mediator's interleukin-16, immunoglobulin E along with eosinophil count in diagnosing COVID-19 and determining its severity.

Patients And Methods: Materials and Methods: Cross-sectional case-control study was conducted at Al-Najaf General Hospital, Najaf, Iraq between March and August 2024. 120 participants: 60 confirmed COVID-19 cases and 60 healthy controls which matched cases in terms of age and sex.

View Article and Find Full Text PDF