Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intervertebral disc disease is the most common spinal cord-related disease in dogs, caused by disc material protrusion or extrusion that compresses the spinal cord, leading to clinical symptoms. Diagnosis involves identifying radiographic signs such as intervertebral disc space narrowing, increased opacity of the intervertebral foramen, spondylosis deformans, and magnetic resonance imaging findings like spinal cord compression and lesions, alongside clinical symptoms and neurological examination findings. Intervertebral disc space narrowing on radiographs is the most common finding in intervertebral disc extrusion. This study aimed to develop a deep learning model to automatically recognize narrowed intervertebral disc space on caudal thoracic and lumbar X-ray images of dogs. In total, 241 caudal thoracic and lumbar lateral X-ray images from 142 dogs were used to develop and evaluate the model, which quantified intervertebral disc space distance and detected narrowing using a large-kernel one-dimensional convolutional neural network. When comparing veterinary clinicians and the deep learning model, the kappa value was 0.780, with 81.5% sensitivity and 95.6% specificity, showing substantial agreement. In conclusion, the deep learning model developed in this study, automatically and accurately quantified intervertebral disc space distance and detected narrowed sites in dogs, aiding in the initial screening of intervertebral disc disease and lesion localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631885PMC
http://dx.doi.org/10.3389/fvets.2024.1453765DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
36
disc space
24
deep learning
16
learning model
16
caudal thoracic
12
thoracic lumbar
12
x-ray images
12
intervertebral
10
disc
10
narrowed intervertebral
8

Similar Publications

Cell and Hydrogel-Integrated Therapies for Intervertebral Disc Regeneration.

Adv Healthc Mater

September 2025

Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA.

Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), significantly affecting on global disability and healthcare costs. Traditional treatments primarily focus on symptom management rather than addressing the underlying causes, such as the decline in nucleus pulposus (NP) cells and reduced extracellular matrix (ECM) synthesis. Cell therapy shows promise by replenishing NP cells, activating resident cells, and enhancing ECM deposition.

View Article and Find Full Text PDF

Background: Intervertebral disc degeneration (IDD) is a prevalent spinal condition frequently associated with pain and motor impairment, imposing a substantial burden on quality of life. Despite extensive investigations into the genetic predisposition to IDD, the precise pathogenic genes and molecular pathways involved remain inadequately characterized, underscoring the need for continued research to clarify its genetic underpinnings.

Methods: This study leveraged IDD data from the FinnGen R12 cohort and integrated expression quantitative trait loci data across 49 tissues from the Genotype-Tissue Expression version 8 database to perform a cross-tissue transcriptome-wide association study (TWAS).

View Article and Find Full Text PDF

Lower back pain caused by intervertebral disk degeneration (IDD) is a common problem among middle-aged and older adults. We aimed to identify novel diagnostic biomarkers of IDD and analyze the potential association between key genes and immune cell infiltration. We screened differentially expressed genes (DEGs) related to IDD and gene sets associated with mitochondrial energy metabolism using the Gene Expression Omnibus and GeneCards databases, respectively.

View Article and Find Full Text PDF

Lycium barbarum alleviates oxidative stress-induced ferroptosis and enhances mitophagy in intervertebral disc degeneration.

Cell Signal

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; Molecular Pharmacology Research Center, School of Pharmaceutical Sciences; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China. Electronic address:

Lycium barbarum is a traditional Chinese medicine that has been demonstrated to exhibit a wide variety of biological functions, such as antioxidation, neuroprotection, and immune modulation. The therapeutic effect of Lycium barbarum on intervertebral disc degeneration (IVDD) has not been conclusively established. In our study, we investigated the mechanisms of Lycium barbarum extract (LBE) using Network pharmacology and bioinformatic analyses.

View Article and Find Full Text PDF

Pug dogs are predisposed to thoracolumbar myelopathy associated with vertebral articular process dysplasia, suggesting a biomechanical etiology. While surgery is commonly pursued, long-term outcomes remain poorly defined. This retrospective descriptive case series reports on seven Pug dogs that underwent surgical treatment for thoracolumbar myelopathy and were followed up for at least 7 years postoperatively.

View Article and Find Full Text PDF