A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Developing high-performance and sustainable polylactic acid/recycled polyolefin blends: Tuning the degree of functional group reaction and performance optimization. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the current development of the plastics industry, the use of biodegradable and recycled plastics not only effectively reduces the volume of landfills and incineration but also significantly decreases environmental damage. However, the extensive application of biodegradable polylactic acid (PLA) is limited by its poor toughness and thermal properties. The study introduced recycled linear low-density polyethylene (R-LLDPE) and ethylene-octene copolymer (POE) to modify PLA, primarily based on their excellent toughness and thermal resistance. Furthermore, being a recycled material, R-LLDPE is economically advantageous and conforms to the ecological requirements of resource recycling. Therefore,the study introduced glycidyl methacrylate (GMA) and styrene (St) to synthesize the graft copolymer (R-LLDPE/POE)-g-(GMA-co-St) (RPGS). The RPGS serves as a modifier for PLA resin. The effects of different GMA amounts in RPGS on the properties and microstructure of PLA/RPGS blends were examined. The results illustrate that GMA was successfully grafted onto the molecular chains of R-LLDPE/POE (RP), with St acting as a "bridge" to enhance further the grafting efficiency of GMA on RP macromolecular chains. After introducing RPGS into the PLA matrix, the epoxy groups of GMA reacted with the terminal hydroxyl groups of PLA, significantly decreasing the particle size of the dispersed phase and closely integrating with the PLA matrix, hence greatly improving the compatibility between PLA and RP. With the increase of GMA amount, the optical, thermal, and hydrophobic properties of the blends were increased, while the flexibility first increased and then decreased. When the amount of GMA was 5 wt% in RPGS, the G and G of GMA reached optimal values of 2.55 % and 51 %, the blend exhibited the optimum overall properties: haze decreased to 28.3 %, light transmittance increased to 92.5 %, thermal decomposition temperature increased to 368.12 °C, and the Vicat softening temperature increased to 78.2 °C. While maintaining the tensile strength at 54.3 MPa, the notched impact strength and elongation at break increased to 10,182.4 J/m and 231.7 %, respectively, with the matrix exhibiting significant shear yielding. The research presents an eco-friendly and efficient method for producing high-performance PLA-based materials, effectively addressing the shortcomings of PLA in toughness and thermal resistance. The modified materials had excellent mechanical and thermal capabilities while offering financial and environmental benefits. The development of this material is anticipated to enhance the industrial utilization of biodegradable and recycled plastics, offering essential support for attaining sustainable manufacturing and a circular economy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138554DOI Listing

Publication Analysis

Top Keywords

toughness thermal
12
biodegradable recycled
8
recycled plastics
8
pla
8
study introduced
8
thermal resistance
8
gma
8
pla matrix
8
temperature increased
8
thermal
6

Similar Publications