98%
921
2 minutes
20
Drug conjugates of tamoxifen and melatonin linked through the amide side chain of melatonin (,) were reported as promising agents for future treatment of breast cancer, possibly reversing the adverse effects of tamoxifen. Here, we report the synthesis and pharmacological evaluation of a novel series of anticancer drug conjugates linking melatonin with tamoxifen through polymethylene spacers through the ether oxygen of melatonin (-, -, ) and compare them to the previously reported amide-linked analogues and . All hybrid ligands are antagonists of estrogen receptor alpha and agonists of the melatonin MT receptor with variable potencies. Several drug conjugates including the (CH)-linked analogues and and the (CH)-linked compound showed higher potency to inhibit cell viability than the combination of melatonin and tamoxifen on at least one cancer cell line including MCF-7, MDA-MB-231, and HT-1080.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618438 | PMC |
http://dx.doi.org/10.1021/acsomega.4c08881 | DOI Listing |
Nat Biotechnol
September 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Antibody-drug conjugates (ADCs) are effective targeted therapeutics but are limited in their ability to incorporate less-potent payloads, varied drug mechanisms of action, different drug release mechanisms and tunable drug-to-antibody ratios. Here we introduce a technology to overcome these limitations called 'antibody-bottlebrush prodrug conjugates' (ABCs). An ABC consists of an IgG1 monoclonal antibody covalently conjugated to the terminus of a compact bivalent bottlebrush prodrug that has payloads bound through cleavable linkers and polyethylene glycol branches.
View Article and Find Full Text PDFEur J Clin Pharmacol
September 2025
Hospital Management Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
Introduction: Metastatic breast cancer (mBC) is a major global health challenge. Antibody-drug conjugates (ADCs), including trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), and sacituzumab govitecan (SG), offer clinical benefits but are associated with high costs, making cost-effectiveness assessments essential for policy decisions.
Methods: This systematic review analyzed economic evaluations comparing T-DM1, T-DXd, and SG with conventional treatments in breast cancer.
Adv Drug Deliv Rev
September 2025
Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua
Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea. Electronic address:
Modified hyaluronic acid (HA) biomaterials have received considerable attention in recent years, especially in developing innovative therapeutic strategies for targeted disease interventions. HA serves to shield therapeutics from the physiological environment, while enabling safe delivery and promoting uptake into specific cells. As a hydrophilic chain polymer, HA is readily chemically modified into functional biomaterials for drug delivery and cancer immunotherapy.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh.
Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.
Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.