98%
921
2 minutes
20
Random-regression models (RRM) are used in national genetic evaluations for longitudinal traits. The outputs of RRM are an index based on random-regression coefficients and its reliability. The reliabilities are obtained from the inverse of the coefficient matrix of mixed model equations (MME). The reliabilities must be approximated for large datasets because it is impossible to invert the MME. There is no extensive literature on methods to approximate the reliabilities of RRM when genomic information is included by single-step GBLUP. We developed an algorithm to approximate such reliabilities. Our method combines the reliability of the index without genomic information with the reliability of a GBLUP model in terms of effective record contributions. We tested our algorithm in the 3-lactation model for milk yield from the Czech Republic. The data had 30 million test-day records, 2.5 million animals in the pedigree, and 54,000 genotyped animals. The correlation between our approximation and the reliabilities obtained from the inversion of the MME was 0.98, and the slope and intercept of the regression were 0.91 and 0.02, respectively. The elapsed time to approximate the reliabilities for the Czech data was 21 min.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624375 | PMC |
http://dx.doi.org/10.3168/jdsc.2023-0513 | DOI Listing |
Phys Med Biol
September 2025
Zhejiang University, Zijingang Campus of Zhejiang University,Yuhangtang Road No.866,Zhejiang Province, China 310058, Hangzhou, Zhejiang, 310058, CHINA.
Transcranial ultrasound research has garnered significant attention due to its non-invasive nature, absence of ionizing radiation, and portability, making it advantageous for both imaging and therapy. A critical aspect of advancing transcranial research lies in understanding the ultrasound transmission performance of the human skull. However, inherent variations in skull shape, physical parameters, and age-related changes pose challenges for comparative studies.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.
Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.
View Article and Find Full Text PDFJAACAP Open
September 2025
University of Miami, Coral Gables, Florida.
Objective: Researchers have differentiated forms (overt, relational) and functions (proactive, reactive) of aggressive behavior; however, the assessment options for measuring these constructs in youth remain limited. This study examined the parent-report Peer Conflict Scale (PCS) for measuring forms and functions of youth aggressive behavior in English and Spanish, including short- and long-form versions.
Method: Participants were caregivers of 653 youths (ages 6-17; 57% male; 48% Hispanic) throughout North America.
J Chem Phys
September 2025
Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom.
Fixed-node diffusion quantum Monte Carlo (FN-DMC) is a widely trusted many-body method for solving the Schrödinger equation, known for its reliable predictions of material and molecular properties. Furthermore, its excellent scalability with system complexity and near-perfect utilization of computational power make FN-DMC ideally positioned to leverage new advances in computing to address increasingly complex scientific problems. Even though the method is widely used as a computational gold standard, reproducibility across the numerous FN-DMC code implementations has yet to be demonstrated.
View Article and Find Full Text PDFACS Omega
September 2025
Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de Mexico, Mexico.
In this study, we introduce a set of novel computational strategies based on second-order Mo̷ller-Plesset perturbation theory (MP2), enhanced through acceleration techniques, such as the resolution of the identity (RI). These approaches are further refined via spin-component scaling (SCS), following Grimme's methodology, and are specifically calibrated for the quantitatively accurate prediction of weak interaction energiesinteractions that play a critical role in biological systems. Among the developed methods, three variants exhibit outstanding performance, surpassing the accuracy of several state-of-the-art, nondynamical electronic structure techniques.
View Article and Find Full Text PDF