Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Random-regression models (RRM) are used in national genetic evaluations for longitudinal traits. The outputs of RRM are an index based on random-regression coefficients and its reliability. The reliabilities are obtained from the inverse of the coefficient matrix of mixed model equations (MME). The reliabilities must be approximated for large datasets because it is impossible to invert the MME. There is no extensive literature on methods to approximate the reliabilities of RRM when genomic information is included by single-step GBLUP. We developed an algorithm to approximate such reliabilities. Our method combines the reliability of the index without genomic information with the reliability of a GBLUP model in terms of effective record contributions. We tested our algorithm in the 3-lactation model for milk yield from the Czech Republic. The data had 30 million test-day records, 2.5 million animals in the pedigree, and 54,000 genotyped animals. The correlation between our approximation and the reliabilities obtained from the inversion of the MME was 0.98, and the slope and intercept of the regression were 0.91 and 0.02, respectively. The elapsed time to approximate the reliabilities for the Czech data was 21 min.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624375PMC
http://dx.doi.org/10.3168/jdsc.2023-0513DOI Listing

Publication Analysis

Top Keywords

approximate reliabilities
12
approximation reliabilities
8
reliabilities
6
reliabilities random-regression
4
random-regression single-step
4
single-step genomic
4
genomic best
4
best linear
4
linear unbiased
4
unbiased predictor
4

Similar Publications

An adjustable three-layer skull phantom with realistic ultrasound transmission properties.

Phys Med Biol

September 2025

Zhejiang University, Zijingang Campus of Zhejiang University,Yuhangtang Road No.866,Zhejiang Province, China 310058, Hangzhou, Zhejiang, 310058, CHINA.

Transcranial ultrasound research has garnered significant attention due to its non-invasive nature, absence of ionizing radiation, and portability, making it advantageous for both imaging and therapy. A critical aspect of advancing transcranial research lies in understanding the ultrasound transmission performance of the human skull. However, inherent variations in skull shape, physical parameters, and age-related changes pose challenges for comparative studies.

View Article and Find Full Text PDF

Assessment of industrial fault diagnosis using rough approximations of fuzzy hypersoft sets.

PLoS One

September 2025

Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.

Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.

View Article and Find Full Text PDF

Objective: Researchers have differentiated forms (overt, relational) and functions (proactive, reactive) of aggressive behavior; however, the assessment options for measuring these constructs in youth remain limited. This study examined the parent-report Peer Conflict Scale (PCS) for measuring forms and functions of youth aggressive behavior in English and Spanish, including short- and long-form versions.

Method: Participants were caregivers of 653 youths (ages 6-17; 57% male; 48% Hispanic) throughout North America.

View Article and Find Full Text PDF

Fixed-node diffusion quantum Monte Carlo (FN-DMC) is a widely trusted many-body method for solving the Schrödinger equation, known for its reliable predictions of material and molecular properties. Furthermore, its excellent scalability with system complexity and near-perfect utilization of computational power make FN-DMC ideally positioned to leverage new advances in computing to address increasingly complex scientific problems. Even though the method is widely used as a computational gold standard, reproducibility across the numerous FN-DMC code implementations has yet to be demonstrated.

View Article and Find Full Text PDF

Computationally Efficient Yet Quantitatively Accurate Scaled MP2 Protocols for the Prediction of Weak Interaction Energies in Complex Biological Systems.

ACS Omega

September 2025

Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de Mexico, Mexico.

In this study, we introduce a set of novel computational strategies based on second-order Mo̷ller-Plesset perturbation theory (MP2), enhanced through acceleration techniques, such as the resolution of the identity (RI). These approaches are further refined via spin-component scaling (SCS), following Grimme's methodology, and are specifically calibrated for the quantitatively accurate prediction of weak interaction energiesinteractions that play a critical role in biological systems. Among the developed methods, three variants exhibit outstanding performance, surpassing the accuracy of several state-of-the-art, nondynamical electronic structure techniques.

View Article and Find Full Text PDF