Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Exploring diversity and community composition patterns across evolutionary and functionally diverse organisms is critical for understanding the general processes that shape biodiversity in response to environmental changes. Knowledge of multi-trophic relationships offers valuable insights to support the effective assessment and management of freshwater ecosystems. In this study, we conducted a cross-taxa assessment of benthic macroinvertebrates and microorganisms using metabarcoding-based surveys to evaluate habitat restoration in a dam-impacted river. We found no correlation between the α-diversity of the benthic macroinvertebrate and microbial communities. This suggests that factors influencing the α-diversity of different trophic groups might operate independently or through different mechanisms, even within the same habitat. In contrast, we observed positively correlated β-diversity patterns between the two benthic communities influenced by dam fragmentation and gravel bar restoration. This suggests that environmental heterogeneity between sites may have a common influence on the patterns of pairwise dissimilarities in the benthic communities, even though they have significant differences in key traits, e.g., species composition, functional roles, or trophic level. Additionally, phylogenetic structure analysis revealed a greater dam impact on benthic macroinvertebrates than microbial communities. Benthic microorganisms consistently formed phylogenetically clustered communities regardless of dam impact, while the macroinvertebrates shifted from competitive exclusion to environmental filtering in response to dam fragmentation. Our cross-taxa assessment further explained the relationships among benthic communities and their associations with environmental factors in a river ecosystem undergoing habitat restoration. Our study highlights the significant implications of evaluating different biological communities across trophic levels for river restoration strategies and ecosystem assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177886 | DOI Listing |