Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using chromosomal barcoding, we observed that >97% of the Streptococcus pneumoniae (Spn) population turns over in the lung within 2 days post-inoculation in a murine model. This marked collapse of diversity and bacterial turnover was associated with acute inflammation (severe pneumococcal pneumonia), high bacterial numbers in the lungs, bacteremia, and mortality. Intra-strain competition mediated by the blp locus, which expresses bacteriocins in a quorum-sensing-dependent manner, was required for each of these effects. Bacterial turnover from the activity of Blp-bacteriocins increased the release of the pneumococcal toxin, pneumolysin (Ply), which was sufficient to account for the lung pathology. The ability of Ply to evade complement, rather than its pore-forming activity, prevented opsonophagocytic clearance of Spn enabling its multiplication in the lung, facilitating the inflammatory response and subsequent invasion into the bloodstream. Thus, our study demonstrates how an appreciation for bacterial population dynamics during infection provides new insight into pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621112PMC
http://dx.doi.org/10.1038/s42003-024-07176-4DOI Listing

Publication Analysis

Top Keywords

bacterial turnover
12
pneumococcal pneumonia
8
intra-strain competition
8
bacterial
5
pneumonia driven
4
driven increased
4
increased bacterial
4
turnover bacteriocin-mediated
4
bacteriocin-mediated intra-strain
4
competition chromosomal
4

Similar Publications

Microbial Physiological Adaptation to Biodegradable Microplastics Drives the Transformation and Reactivity of Dissolved Organic Matter in Soil.

Environ Sci Technol

September 2025

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.

The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.

View Article and Find Full Text PDF

Tropical rainforests support critical biogeochemical cycles regulated by complex plant-soil microbial interactions but are threatened by global change. Much of the uniquely biodiverse and carbon rich forest on Borneo has been lost through extensive conversion to monoculture plantation, and a significant proportion of the remaining forest has been heavily modified by selective logging. Ecological restoration of tropical forest aims to return forests to a near pristine state, but restoration initiatives are hindered by limited understanding of the underpinning plant-soil feedbacks, and impacts on soil microbial communities are unresolved.

View Article and Find Full Text PDF

Unlabelled: Microbial deconstruction of plant polysaccharides is important for environmental nutrient cycling, and bacteria proficient at this process have extensive suites of polysaccharide-specific enzymes. In the gram-negative saprophyte , genome annotation suggests that 17 genes are predicted to encode Carbohydrate-Active enZymes (CAZymes) with roles in cellulose degradation; however, previous work suggested that only a subset of these genes is essential. Building upon that work, here, we identify the required and minimally sufficient set of enzymes for complete degradation of cellulose using a combination of transcriptomics, gene deletion analysis, heterologous expression studies, and metabolite analysis.

View Article and Find Full Text PDF

Plasma-driven biocatalysis utilizes in situ HO production by atmospheric pressure plasmas to drive HO-dependent enzymatic reactions. Having previously established plasma-driven biocatalysis using recombinant unspecific peroxygenase from Agrocybe aegerita (rAaeUPO) to produce (R)-1-phenylethanol from ethylbenzene, we here employed CypC from Bacillus subtilis 168 (synonyms: YbdT, P450BSβ), an integral enzyme of surfactin and fengycin biosynthesis. CypC naturally hydroxylates medium and long-chain carboxylic acids.

View Article and Find Full Text PDF

Objective: To investigate the histopathology of diabetic periodontal tissues, we examined periodontal disease in Torii-Lepr (SDT fa/fa) rats, mimicking type 2 diabetes.

Methods: Forty 30-week-old male SDT fa/fa rats and age-matched Sprague-Dawley (SD) rats were fixed, and the mandibular first molars and their periodontal tissues were histochemically examined.

Results: SDT fa/fa rats exhibited epithelial downgrowth in the previous region of interradicular/interalveolar septa and periodontal spaces.

View Article and Find Full Text PDF