Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cardiovascular diseases claim over 10 million lives annually, highlighting the critical need for long-term monitoring and early detection of cardiac abnormalities. Existing techniques like electrocardiograms (ECG) and Holter are accurate but suffer from discomfort caused by body-attached electrodes. While wearable devices using photoplethysmography offer more convenience, they sacrifice accuracy and are susceptible to environmental interference. Here we present a radio frequency (RF)-based (60 to 64 GHz) sensing system that monitors long-term heart rate variability (HRV) with clinical-grade accuracy. Our system successfully overcomes the orders-larger interference from respiration motion in far-field conditions without any model training. By identifying previously undiscovered frequency ranges (beyond 10-order heartbeat harmonics) where heartbeat information predominates over other motions, we generate prominent heartbeat patterns with harmonics typically considered detrimental. Extensive evaluations, including a large-scale outpatient setting involving 6,222 eligible participants and a long-term daily life scenario, where sleep data was collected over 5 separate random nights over two months and a continuous 21-night period, demonstrate that our system can monitor HRV and identify abnormalities with comparable performance to clinical-grade ECG-based systems. This RF-based HRV sensing system has the potential to support active self-assessment and revolutionize medical prevention with long-term and precise health monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621424 | PMC |
http://dx.doi.org/10.1038/s41467-024-55061-9 | DOI Listing |