Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The National Cancer Institute-Molecular Analysis for Therapy Choice (NCI-MATCH) trial was implemented to identify actionable genetic alterations across cancer types and enroll patients accordingly onto treatment arms, irrespective of tumor histology. Using multiplex polymerase chain reaction (PCR) next-generation sequencing, NCI-MATCH genotyped 5,540 patients, discovering gene fusions in 202/5,540 tumors (3.65%). This result, substantially lower than the fusion detection prevalence of 8.5% across all patients with cancer screened at Massachusetts General Hospital's (MGH) clinical laboratories, supported reanalysis of NCI-MATCH samples identified as mutations-of-interest (MOI)-negative. The assay used by NCI-MATCH requires previous knowledge of both fusion genes, cannot detect novel fusions, and may underestimate fusion-positive patients. Anchored multiplex PCR (AMP) technology permits fusion detection with knowledge of just one gene of the fusion partners.

Methods: Using AMP-based kits, we reprocessed 663 MOI-negative samples. 200 ng of RNA per sample were shipped from the Eastern Cooperative Oncology Group-American College of Radiology Imaging Network biorepository to MGH (n = 319) and Yale University (n = 344), processed, and sequenced on the NextSeq550. Reported fusions were manually reviewed, and novel fusions orthogonally verified via reverse-transcription PCR and Sanger sequencing.

Results: AMP identified 148 fusions in 142/663 MOI-negative patients (21% [95% CI, 18 to 25]), of which 28 were covered by the Oncomine Comprehensive Assay (OCA) panel but missed, while 120 were not covered by OCA. Among AMP-identified positive patients, 32 had actionable fusions, 24 contained novel fusions, and six had two fusion events. We identified fusions in 12/34 (35% [95% CI, 20 to 54]) cholangiocarcinomas and 43/109 (39% [95% CI, 30 to 49]) sarcomas.

Conclusion: Technology and awareness of actionable fusions have improved since the NCI-MATCH trial. With AMP-based technology, we identified 142 patients with fusions not detected during NCI-MATCH screening, many potentially actionable. These striking data underscore the need to optimize the fusion-detection capabilities of genotyping assays used in precision medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634183PMC
http://dx.doi.org/10.1200/PO-24-00493DOI Listing

Publication Analysis

Top Keywords

novel fusions
12
fusions
11
gene fusions
8
national cancer
8
cancer institute-molecular
8
institute-molecular analysis
8
analysis therapy
8
therapy choice
8
nci-match trial
8
fusion detection
8

Similar Publications

Synthesis and Evaluation of Phenoxybenzylpiperidinyl Analogues as Agonists of the Chemokine Receptor CCR8.

Chem Biodivers

September 2025

Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular, Structural and Translational Virology Research Group, KU Leuven, Leuven, Belgium.

The human chemokine receptor 8 (CCR8) received attention as target for the treatment of various autoimmune disorders. Phenoxybenzylpiperidine analogues are known to act as CCR8 agonists, although their structure-activity relationship (SAR) has been studied to a limited extent. In this study, the SAR of phenoxybenzylpiperidinyl analogues was explored in a systematic way by fusion or insertion of various heterocyclic groups on the piperidinyl ring, yielding a set of 21 novel phenoxybenzylpiperidinyl derivatives.

View Article and Find Full Text PDF

Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.

View Article and Find Full Text PDF

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF

To combine the strengths of Gaussian and non-Gaussian latent variable models, a novel information fusion strategy has recently been proposed under the deep learning framework. Although promising results have been obtained, the critical structure learning problem remains unsolved, which seriously hinders the automation of data-driven modeling and analytics. In this article, the maximal information coefficient (MIC) method is introduced as a measurement of the AS between two latent variables, which has no restriction in the type of data distribution.

View Article and Find Full Text PDF

The spindle cell variant of papillary thyroid carcinoma (PTC) is exceptionally rare and poses significant diagnostic challenges due to its morphological overlap with other spindle cell lesions of the thyroid. We report a novel case of spindle cell variant PTC in a 66-year-old woman presenting with a TI-RADS 4 thyroid nodule, initially classified as Bethesda III on fine-needle aspiration. Histopathological examination revealed a biphasic tumor composed predominantly of bland spindle cells arranged in solid sheets and fascicles, admixed with entrapped thyroid follicles.

View Article and Find Full Text PDF