A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Broadband giant nonlinear response using electrically tunable polaritonic metasurfaces. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intersubband transitions in semiconductor heterostructures offer a way to achieve large and designable nonlinearities with dynamic modulation of intersubband energies through the Stark effect. One promising approach for incorporating these nonlinearities into free space optics is a nonlinear polaritonic metasurface, which derives resonant coupling between intersubband nonlinearities and optical modes in nanocavities. Recent work has shown efficient frequency mixing at low pumping intensities, with the ability to electrically tune the phase, amplitude, and spectral peak of it. However, the spectral tunability of intersubband nonlinearities is constrained by the static spectral response of nanocavities. To overcome this limitation, we present nonlinear polaritonic metasurfaces for a broadband giant nonlinear response. This is achieved by combining a Stark tunable nonlinear response from a quantum-engineered semi-conductor heterostructure with arrays of three nanocavities with different resonant wavelengths. We experimentally demonstrate broadband second harmonic generation (SHG) and a shift in the peak SHG efficiency within the range of 8.9-10.6 μm by applying bias voltage. This work will provide a promising route for achieving broadband and electrically tunable nonlinearities in metasurfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502031PMC
http://dx.doi.org/10.1515/nanoph-2023-0682DOI Listing

Publication Analysis

Top Keywords

nonlinear response
12
broadband giant
8
giant nonlinear
8
electrically tunable
8
polaritonic metasurfaces
8
nonlinear polaritonic
8
intersubband nonlinearities
8
nonlinear
5
nonlinearities
5
broadband
4

Similar Publications