98%
921
2 minutes
20
A multilayer core-shell heterostructure with CoNi-LDH as the core and NiS nanosheets as the shell is deposited on MXene-coated carbon nanofibers by electrospinning and electrochemical deposition. This unique structure not only combines highly conductive and hydrophilic one-dimensional carbon nanofibers but also exposes abundant two-dimensional reactive sites and multiple ion diffusion channels to maximize material utilization, enhance electron transfer kinetics, accelerate Faraday reaction, high capacitance and strong stability. The CNNS@MXCF electrode exhibits outstanding electrochemical characteristics, including a capacity of 1441.8 F g at a current density of 1 A g and excellent cycling stability. The CNNS@MXCF//VN@MXCF device shows a high energy density of 84.4 Wh kg at 0.8 kW kg power density, with nearly 92% capacitance retention after 10,000 cycles (30 A g). In addition, the oxygen evolution reaction (OER) shows a small overpotential of 128 mV, confirming the versatility and large potential of the materials and strategy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c04103 | DOI Listing |
Phys Chem Chem Phys
September 2025
Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand-826004, India.
Here, Ln-Li co-doped YO@ZnO core-shell heterostructures were synthesized by three different techniques - intermediate layer conversion method, a hydrothermal method, and an interlayer mediated hydrothermal method. The synthesis procedure is optimized based on the thickness and compactness of the developed shell. The growth kinetics and synthesis mechanism of each adopted method have been explained in detail using XRD, FESEM, TEM, SAED, and EDX characterization techniques.
View Article and Find Full Text PDFNanoscale
September 2025
School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
College of Mechatronics and Control Engineering & State Key Lab of Radio Frequency Heterogenous Integration, Shenzhen University, Shenzhen 518060, China. Electronic address:
Overcoming the high-temperature limitations of ceramic fuel cells (CFCs) requires the development of electrolytes capable of efficient proton transport at reduced operating temperatures. In this work, we introduced a surface-engineered SrTiO electrolyte coated with 10 mol%-CeO, forming a core-shell heterostructure that promoted the formation of oxygen vacancies localized at the interface. These vacancies significantly reduced the energy barrier for proton migration, enabling enhanced ionic conductivity at low operating temperatures.
View Article and Find Full Text PDFJACS Au
August 2025
Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
The colloidal-atomic layer deposition (c-ALD) method is employed to grow a zinc sulfide (ZnS) shell on CsPbBr perovskite quantum dots (PeQDs) to form CsPbBr/ZnS core/shell heterostructures to address the intrinsic stability challenges of PeQDs. The c-ALD process offers layer by layer control over the thickness of the shell, enabling uniform and conformal encapsulation, which significantly passivates the surface defects and enhances the optical properties of the PeQDs. This approach significantly improves photoluminescence quantum yield, increases environmental stability, and prolongs the average radiative lifetime of the CsPbBr PeQDs.
View Article and Find Full Text PDFACS Nano
September 2025
Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona 08930, Spain.
Engineering lattice strain, electronic structure, and crystallinity in palladium alloys offers a promising approach to significantly enhance their electrocatalytic performance. In this work, we present a versatile strategy to synthesize Pd-based phosphide alloys integrated with non-noble metal atoms (Pd-M-P; M = Co, Ni, Cu), characterized by expanded lattice structures and a crystalline-amorphous core-shell architecture. Catalytic performance assessments revealed that CuPdP exhibits an impressive mass activity of 7.
View Article and Find Full Text PDF