Microplastic pollution in salt marsh and urban tributary sediment cores of the River Thames estuary, UK: Spatial and temporal accumulation trends.

Mar Pollut Bull

British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham NG12 5GG, United Kingdom. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microplastics in sediment cores from urban tidal tributaries, Barking and Bow Creek-London and salt marshes Swanscombe, Kent, and Rainham, Essex, Thames estuary (UK), were quantified by density separation and ATR-FTIR spectroscopy. All eight tributary cores were dominated by low-density microplastics, polypropylene, polyethylene, and polystyrene with the greatest abundance (mean 360.0 ± 12.0 particles 100 g dwt (0-10 cm depth) observed furthest from the confluence with the Thames due to storm tank combined-sewer-overflow input. Salt marsh core microplastics were highest at Swanscombe (mean 267.1 ± 10.2 particles 100 g dwt at 0-10 cm depth) in the high-marsh vegetation zone. Marsh sediment radionuclide dating (Pb, Cs) suggested a presence of microplastics in the sediment since at least the late 1950s, with increasing abundance towards surface sediments. Tidal tributaries and salt marshes of the Thames act as natural filters, with salt marshes accumulating microplastics over time and tributaries acting as both stores and sources depending on individual site conditions and hydrodynamic variability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.117360DOI Listing

Publication Analysis

Top Keywords

salt marshes
12
salt marsh
8
sediment cores
8
thames estuary
8
microplastics sediment
8
tidal tributaries
8
particles 100 g
8
100 g dwt
8
dwt 0-10 cm
8
0-10 cm depth
8

Similar Publications

Phages exert strong selective pressure on bacterial hosts, yet the role of abiotic factors in resistance evolution is often overlooked. Abiotic effects can shape both demographic factors, such as encounter rates, and trade-offs between resistance and fitness. We used the salt-marsh bacterium (a.

View Article and Find Full Text PDF

Salinity-driven trade-offs between nitrogen removal and microbiome dynamics in Fe-C-CWs toward saline aquaculture tailwater management.

Water Res

August 2025

College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China. Electronic address:

Salinity-driven nitrogen removal mechanisms in iron-carbon CWs (Fe-C-CWs) remain poorly understood for aquaculture tailwater management. Through a 155-day trial under four salinities (designated as S0, S10, S20, and S30), result showed that S20 achieved optimal removals of total nitrogen (84.9 ± 3.

View Article and Find Full Text PDF

Blue carbon ecosystems (BCEs) such as seagrass meadows, mangrove forests, and salt marshes are important carbon sinks that store carbon for millennia. Recently, organic matter (OM) sulfurization and pyritization have been proposed as mechanisms of net carbon storage in BCEs. At our study site, organic sulfur that is resistant to acid hydrolysis (protokerogen) is an order of magnitude less abundant than pyrite sulfur, suggesting a dominance of pyritization over sulfurization.

View Article and Find Full Text PDF

With coastal populations rising at three times the global average, sustainable ways of safeguarding human needs around access and use of the coast alongside lasting ecosystem health of coastal environments must be developed. At the same time, human populations are facing the challenge of managing coastal access on the back of a legacy of human interventions that have already altered - and have often had unintended or unforeseen impacts on - the coastal system and its functioning. We chart the history of the evolution of North Bull Island in Dublin Bay as an example of major unforeseen sedimentation in a coastal estuarine bay following the construction of river mouth training walls.

View Article and Find Full Text PDF

We describe isolation and characterization of a novel henipavirus, designated Salt Gully virus, from the urine of pteropid bats in Australia. We noted the virus to be most closely related to Angavokely virus, not reliant on ephrin receptors for cell entry, and of unknown risk for human disease.

View Article and Find Full Text PDF