Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photoelectrochemical (PEC) water splitting for hydrogen generation holds immense potential for addressing environmental and energy crises. Tailoring non-covalent interaction via a single atom is anticipated to realize prominent hole extracting facilitating PEC performance, but it has never been reported. In this study, single atom Co-N is coordinated with 5-fluoroanthranilic acid (FAA) molecules, then used as a non-covalent hole-extracting layer on a BiVO substrate. Experiments including X-ray absorption fine spectra, Kelvin probe force microscopy, transient absorption, and theoretical calculation demonstrate the FAA coordination alters the local configuration of the central Co atom, adjusting the interfacial non-covalent interaction, thereby reducing the barrier of charge transfer between BiVO and the hole-extracting layer. Consequently, photogenerated carriers are more effectively separated, and the PEC water oxidation performance is significantly enhanced with the photocurrent density of 5.47 mA cm at 1.23 V versus RHE, much higher than those of previously reported BiVO photoanodes composited with porphyrin-based compounds. Experiments and theoretical simulation confirm that the boosted PEC performance originates from exceptional interfacial charge transfer rather than surface catalysis dynamic. This study provides an efficient strategy for tailoring non-covalent interaction by regulating single-atom coordination and promoting hole extract to boost PEC water oxidation activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202410632DOI Listing

Publication Analysis

Top Keywords

non-covalent interaction
16
tailoring non-covalent
12
single atom
12
charge transfer
12
water oxidation
12
pec water
12
interaction single
8
interfacial charge
8
pec performance
8
hole-extracting layer
8

Similar Publications

Oral nanoformulation of a host-directed antiviral niclosamide effectively treats severe fever with thrombocytopenia syndrome.

Biomed Pharmacother

September 2025

Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, South Korea. Electronic address:

Severe fever with thrombocytopenia syndrome (SFTS), caused by the tick-borne Dabie bandavirus (DBV), is a serious public health concern due to its high morbidity and mortality rates. However, no antiviral treatment has been developed for SFTS. Through target-focused screening, we identified five anti-SFTS candidates: niclosamide (NIC), cepharanthine, nifedipine, zanamivir, and ivacaftor.

View Article and Find Full Text PDF

The targeted formation of low-symmetry coordination cages represents a significant design challenge but offers the potential to engineer bespoke molecular hosts with precision. In this work, we have combined the design principles of geometric complementarity and coordination sphere engineering to direct the site- and orientation-selective self-assembly of heteroleptic PdL L -type coordination cages from low-symmetry ligands. The effects of different combinations of heterocyclic donors and their locations within the cage structures on isomer distributions were studied, providing insights on shifts in the balance between non-covalent interactions in the first and second coordination spheres of the cages.

View Article and Find Full Text PDF

Enhancing hydrophobic bioactives' bioaccessibility remains challenging in functional foods due to instability and insufficient controlled-release ability in conventional protein-polysaccharide carriers. We pioneer a new interaction model by covalently grafting corn stover cellulose nanofibers (CNF) with Zein using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), creating conjugates with gradient grafting degrees (CNF/Zein 0.5, CNF/Zein 1, and CNF/Zein 2).

View Article and Find Full Text PDF

Mechanistic insights into neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters: a DLPNO-CCSD(T) study.

Phys Chem Chem Phys

September 2025

Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.

Over the past few years, alkali and alkaline earth metals have emerged as alternative catalysts to transition metal organometallics to catalyze the hydroboration of unsaturated compounds. A highly selective and cost-effective lithium-catalyzed method for the synthesis of an organoborane has been established based on the addition of a B-H bond to an unsaturated bond (polarized or unpolarized) using pinacolborane (HBPin). In the present work, the neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters has been investigated using high-level DLPNO-CCSD(T) calculations to unravel the mechanistic pathways and substrate-dependent reactivity.

View Article and Find Full Text PDF

Measurement of protein non-covalent interactions in buffer and cells.

Magn Reson Lett

May 2025

Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.

Nuclear magnetic resonance (NMR) serves as a powerful tool for studying both the structure and dynamics of proteins. The NOE method, alongside residual dipolar; coupling, paramagnetic effects, -coupling, and other related techniques, has reached a level of maturity that allows for the determination of protein structures. Furthermore, NMR relaxation methods prove to be highly effective in characterizing protein dynamics across various timescales.

View Article and Find Full Text PDF