[Integrated Three-steps Method for Identifying Priority Pollutants in Reclaimed Water].

Huan Jing Ke Xue

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Trace organic contaminants (TrOCs) in reclaimed water can pose potential ecological and health risks during long-term reuse, but the current water quality standards have not restricted their limits. For preventing and controlling the potential risks from TrOCs, an integrated method EHL for identifying priority pollutants in reclaimed water was proposed. This method followed three steps: First, a meta-analysis was performed to assess the exposure of TrOCs in reclaimed water, and a database of TrOCs exposure (E) was established. Then, those hazardous pollutants of particular concern were selected from the E database based on the consensus mechanism, and a dataset of hazardous TrOCs (H) in reclaimed water was established. Finally, the risk quotient of candidates in the H dataset was calculated, and according to the risk-based prioritizing, a final list of priority TrOCs (L) in reclaimed water was recommended. To determine the procedure of EHL, the priority pollutants for reclaimed water in China were identified. Based on literature data from the past 30 years, a total of 32 TrOCs of high concern were selected. Six TrOCs with the highest risk were recommended as an executive priority list for reclaimed water management, including formaldehyde, bis(2-ethylhexyl) phthalate (DEHP), 17-estradiol, erythromycin, sulfamethoxazole, and ibuprofen. The EHL method could effectively identify the priority pollutants in reclaimed water and other water environments, and it is expected to play a crucial role in water quality safety evaluation and management.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202311194DOI Listing

Publication Analysis

Top Keywords

reclaimed water
32
priority pollutants
16
pollutants reclaimed
16
water
11
reclaimed
9
identifying priority
8
water quality
8
concern selected
8
trocs
7
priority
6

Similar Publications

This work aims to investigate the occurrence of 31 antibiotics (ABs), 2 bacteria ( and spp.) and their counterpart antibiotic-resistant bacteria (carbapenem and cephalosporin families), and several antibiotic-resistant genes (ARGs) throughout a full distribution system of reclaimed water (RW) in a real-scale scenario. The RW was analyzed (i) before and after the tertiary treatment (sand filtration and chlorination), (ii) during the storage period in secondary ponds before its use in irrigation, and (iii) directly in the droppers installed in four plastic-based greenhouses over 9 months.

View Article and Find Full Text PDF

Performance assessment of reclaimed fly ash-slag geopolymers incorporating waste spent garnet and waste foundry sand under different curing regimes.

Environ Res

September 2025

Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.

Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).

View Article and Find Full Text PDF

Integrated metagenomic, culture-based, and whole genome sequencing analyses of antimicrobial resistance in wastewater and drinking water treatment plants in Barcelona, Spain.

Int J Hyg Environ Health

September 2025

ISGlobal, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

The misuse and overuse of antimicrobials drive the emergence of antimicrobial resistance (AMR), a critical global health concern. While wastewater treatment plants (WWTPs) are essential for removing microorganisms and contaminants, they also serve as hotspots for antibiotic-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs), facilitating their persistence and dissemination. This study investigated AMR in two WWTPs and one drinking water treatment plant (DWTP) in the Baix Llobregat area of Barcelona, Spain.

View Article and Find Full Text PDF

Maternal Exposure to Carbamazepine at Environmentally Relevant Concentrations Causes Growth Delay in Mouse Embryos.

ACS Omega

August 2025

Koret School of Veterinary Medicine, The RH Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.

The anticonvulsant drug carbamazepine is ubiquitous in the environment and has even even detected in human urine after consuming produce irrigated with reclaimed wastewater. Whether unintentional carbamazepine exposure through food and water affects public health is unknown. Its potential adverse effects are particularly concerning during pregnancy, as carbamazepine increases the risk of intrauterine growth restriction and congenital malformations in fetuses of carbamazepine-prescribed mothers.

View Article and Find Full Text PDF

Water quality of reclaimed lakes in post-mining locations of Czech Republic.

Environ Monit Assess

September 2025

Microbiology Section, Food Business Unit, ALS Czech Republic, Na Harfe 336/9, Prague 9, 190 00, Czech Republic.

Post-mining lakes in the Czech Republic, especially in North Bohemia, represent distinctive opportunities for ecological transformation of degraded landscapes. Such lakes form in closed open-pit mines, where they create new water and wetland habitats. The ecological development of such systems is strongly affected by water quality, which is often impaired by residual contamination from mining and nutrient imbalances.

View Article and Find Full Text PDF