A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Large Band Splitting in g-Wave Altermagnet CrSb. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Altermagnetism (AM), a newly discovered magnetic state, ingeniously integrates the properties of ferromagnetism and antiferromagnetism, representing a significant breakthrough in the field of magnetic materials. Despite experimental verification of some typical AM materials, such as MnTe and MnTe_{2}, the pursuit of AM materials that feature larger spin splitting and higher transition temperature is still essential. Here, our research focuses on CrSb, which possesses Néel temperature of up to 700 K and giant spin splitting near the Fermi level (E_{F}). Utilizing high-resolution angle-resolved photoemission spectroscopy and density functional theory calculations, we meticulously map the three-dimensional electronic structure of CrSb. Our photoemission spectroscopic results on both (0001) and (101[over ¯]0) cleavages of CrSb collaboratively reveal unprecedented details on AM-induced band splitting, and subsequently pin down its unique bulk g-wave symmetry through quantitative analysis of the angular and photon-energy dependence of spin splitting. Moreover, the observed spin splitting reaches the magnitude of 0.93 eV near E_{F}, the most substantial among all confirmed AM materials. This Letter not only validates the nature of CrSb as a prototype g-wave-like AM material but also underscores its pivotal role in pioneering applications in spintronics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.206401DOI Listing

Publication Analysis

Top Keywords

spin splitting
16
band splitting
8
splitting
6
crsb
5
large band
4
splitting g-wave
4
g-wave altermagnet
4
altermagnet crsb
4
crsb altermagnetism
4
altermagnetism newly
4

Similar Publications