Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A key step in building regulatory acceptance of alternative or non-animal test methods has long been the use of interlaboratory comparisons or round-robins (RRs), in which a common test material and standard operating procedure is provided to all participants, who measure the specific endpoint and return their data for statistical comparison to demonstrate the reproducibility of the method. While there is currently no standard approach for the comparison of modelling approaches, consensus modelling is emerging as a "modelling equivalent" of a RR. We demonstrate here a novel approach to evaluate the performance of different models for the same endpoint (nanomaterials' zeta potential) trained using a common dataset, through generation of a consensus model, leading to increased confidence in the model predictions and underlying models. Using a publicly available dataset, four research groups (NovaMechanics Ltd. (NovaM)-Cyprus, National Technical University of Athens (NTUA)-Greece, QSAR Lab Ltd.-Poland, and DTC Lab-India) built five distinct machine learning (ML) models for the in silico prediction of the zeta potential of metal and metal oxide-nanomaterials (NMs) in aqueous media. The individual models were integrated into a consensus modelling scheme, enhancing their predictive accuracy and reducing their biases. The consensus models outperform the individual models, resulting in more reliable predictions. We propose this approach as a valuable method for increasing the validity of nanoinformatics models and driving regulatory acceptance of in silico new approach methodologies for the use within an "Integrated Approach to Testing and Assessment" (IATA) for risk assessment of NMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610486PMC
http://dx.doi.org/10.3762/bjnano.15.121DOI Listing

Publication Analysis

Top Keywords

zeta potential
12
regulatory acceptance
8
consensus modelling
8
individual models
8
models
7
consensus
5
approach
5
round-robin approach
4
approach applied
4
applied nanoinformatics
4

Similar Publications

Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.

View Article and Find Full Text PDF

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF

Purpose: Spinal cord ischemia-reperfusion injury (SCII) is initiated following the occlusion of supporting blood vessels, leading to the loss of neurological function. Here, we aimed to study the regenerative properties of tourniquet-induced hindlimb ischemia exosomes (Exos) in SCII Wistar rats.

Methods: Exos were isolated from rats following tourniquet-induced hindlimb ischemia.

View Article and Find Full Text PDF

Anti-obesity effects of water-dispersible turmeric extract via gut barrier and metabolite modulation in high-fat diet-fed mice.

Food Res Int

November 2025

Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:

Turmeric (Curcuma longa) exhibits anti-obesity properties, yet its low water solubility limits bioavailability. In this study, a water-dispersible turmeric rhizome extract (WDTE) was developed using nano-dispersion technology with maltodextrin as a wall material and characterized by UPLC-QTOF-MS, dynamic light scattering, and zeta potential analysis. The WDTE contained 10 identified metabolites, including five diarylheptanoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, with curcumin quantified at 7.

View Article and Find Full Text PDF