98%
921
2 minutes
20
Arrhythmogenic cardiomyopathy (ACM) is a genetically heterogeneous inherited cardiomyopathy with an estimated prevalence of 1:5000-10 000 that predisposes patients to life-threatening ventricular arrhythmias (VA) and sudden cardiac death (SCD). ACM diagnostic criteria and risk prediction models, particularly for arrhythmogenic right ventricular cardiomyopathy (ARVC), the most common form of ACM, are typically genotype-agnostic, but numerous studies have established clinically meaningful genotype-phenotype associations. Early signs of ACM onset differ by genotype indicating the need for genotype-specific diagnostic criteria and family screening paradigms. Likewise, risk factors for SCD vary by genetic subtype, indicating that genotype-specific guidelines for management are also warranted. Of particular importance, genotype-specific therapeutic approaches are being developed. Results from a randomized controlled trial for flecainide use in ARVC patients are currently pending. Research in a plakophilin-2-deficient mouse model suggests this antiarrhythmic drug may be particularly useful for patients with likely pathogenic or pathogenic (LP/P) PKP2 variants. Additionally, the first gene therapy clinical trials in ARVC patients harboring LP/P PKP2 variants are currently underway. This review aims to provide clinicians caring for ACM patients with an up-to-date overview of the current literature in genotype-specific natural history of disease and management of ACM patients and describe scientific advances that have led to upcoming clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jce.16519 | DOI Listing |
Circulation
September 2025
Cardiology Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Italy (M.P.M).
Cardiac adipose tissue is normally present in the epicardium, but a variable amount can also be present in the myocardium, particularly in the subepicardial regions of the right ventricular anterolateral and apical regions. Pathological adipose tissue changes may occur in both ischemic (previous myocardial infarction) and nonischemic (previous myocarditis, arrhythmogenic cardiomyopathy, lipomatous hypertrophy of the interatrial septum, cardiac lipomas and liposarcomas) conditions, with or without extensive replacement-type myocardial fibrosis. Cardiac magnetic resonance is the gold standard imaging technique to characterize myocardial tissue changes and to distinguish between physiological and pathological cardiac fat deposits.
View Article and Find Full Text PDFJACC Clin Electrophysiol
August 2025
Department of Cardiovascular Medicine, Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Cardiac Death Genomics Laboratory,
Background: Arrhythmogenic cardiomyopathy (ACM) is characterized by fibrofatty myocardial replacement and increased arrhythmic risk. Although exercise exacerbates desmosomal ACM, the prognostic significance of arrhythmias during exercise stress tests (ESTs) remains unclear.
Objectives: The goal of this study was to determine the impact of ventricular arrhythmia observed during peak exercise and/or recovery EST phases on the risk of major ventricular arrhythmia (MVA) events in patients with desmosomal ACM.
Cardiovasc Res
September 2025
Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Aims: Phospholamban (PLN) acts as an inhibitory regulator of calcium uptake in the sarco-/endoplasmic reticulum (SR) of cardiomyocytes. The pathogenic variant, PLN-R14del, leads to dilated and/or arrhythmogenic cardiomyopathy. Previous studies demonstrated that PLN-targeting antisense oligonucleotides (ASOs) can mitigate disease progression in mice.
View Article and Find Full Text PDFJ Am Coll Cardiol
September 2025
Thrombolysis in Myocardial Infarction Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
Background: Genetic variants in cardiomyopathy genes are associated with risk of atrial fibrillation (AF), although data on clinical outcomes for AF patients with such variants remain sparse.
Objectives: We aimed to study the prognostic implication of rare cardiomyopathy-associated pathogenic variants (CMP-PLP) in AF patients from large, well-phenotyped clinical trials.
Methods: CMP-PLP carriers were identified using exome sequencing in 5 multinational trials from the Thrombolysis in Myocardial Infarction study group (ENGAGE AF, FOURIER, SAVOR, PEGASUS, and DECLARE), with replication in the EAST-AFNET-4 trial.
Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease with a poor prognosis and no curative therapy. It may present as arrhythmogenic sudden cardiac death and inevitably progress to terminal heart failure due to the loss of contractile tissue. This study aimed to generate knock-in (KI) mice carrying the 2 genetic variants (DSG2 p.
View Article and Find Full Text PDF