Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the increased research and scholarly attention on two-dimensional (2D) materials, there is still a limited range of practical applications for these materials. This is because it is challenging to acquire properties that are usually obtained by experiments or first-principles predictions, which require substantial time and resources. Descriptor-based machine learning models frequently require further density functional theory (DFT) calculations to enhance prediction accuracy due to the intricate nature of the systems and the constraints of the descriptors employed. Unlike these models, research has demonstrated that graph neural networks (GNNs), which solely rely on the systems' coordinates for model description, greatly improve the ability to represent and simulate atomistic materials. Within this framework, we employed the Atomistic Line Graph Neural Network (ALIGNN) to predict the work function, a crucial material characteristic, for a diverse array of 2D materials sourced from the Computational 2D Materials Database (C2DB). We found that the ALIGNN algorithm shows superior performance compared to standard feature-based approaches. It attained a mean absolute error of 0.20 eV, whereas random forest models achieved 0.27 eV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605676PMC
http://dx.doi.org/10.1039/d4ra07703bDOI Listing

Publication Analysis

Top Keywords

graph neural
12
work function
8
atomistic graph
8
neural networks
8
materials
5
advancing material
4
material predictions
4
predictions superior
4
superior work
4
function estimation
4

Similar Publications

Hubs, influencers, and communities of executive functions: a task-based fMRI graph analysis.

Front Hum Neurosci

August 2025

Baptist Medical Center, Department of Behavioral Health, Jacksonville, FL, United States.

Introduction: This study investigates four subdomains of executive functioning-initiation, cognitive inhibition, mental shifting, and working memory-using task-based functional magnetic resonance imaging (fMRI) data and graph analysis.

Methods: We used healthy adults' functional magnetic resonance imaging (fMRI) data to construct brain connectomes and network graphs for each task and analyzed global and node-level graph metrics.

Results: The bilateral precuneus and right medial prefrontal cortex emerged as pivotal hubs and influencers, emphasizing their crucial regulatory role in all four subdomains of executive function.

View Article and Find Full Text PDF

Pretraining plays a pivotal role in acquiring generalized knowledge from large-scale data, achieving remarkable successes as evidenced by large models in CV and NLP. However, progress in the graph domain remains limited due to fundamental challenges represented by feature heterogeneity and structural heterogeneity. Recent efforts have been made to address feature heterogeneity via Large Language Models (LLMs) on text-attributed graphs (TAGs) by generating fixed-length text representations as node features.

View Article and Find Full Text PDF

Phenotype-driven approaches identify disease-counteracting compounds by analysing the phenotypic signatures that distinguish diseased from healthy states. Here we introduce PDGrapher, a causally inspired graph neural network model that predicts combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem and predicts the perturbagens needed to achieve a desired response by embedding disease cell states into networks, learning a latent representation of these states, and identifying optimal combinatorial perturbations.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA), one of the most common sleep disorders globally, is closely linked to brain function. Resting-state electroencephalography (EEG), due to its convenience, cost-effectiveness, and high temporal resolution, serves as a valuable tool for exploring the human brain function. This study utilized a large cohort with 968 participants who joined in 15-minute daytime resting-state EEG acquisition and overnight polysomnography (PSG) monitoring.

View Article and Find Full Text PDF

Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.

Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.

View Article and Find Full Text PDF