Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development and implementation of microbial chassis cells have profound impacts on circular economy. Non-model bacterium Zymomonas mobilis is an excellent chassis owing to its extraordinary industrial characteristics. Here, the genome-scale metabolic model iZM516 is improved and updated by integrating enzyme constraints to simulate the dynamics of flux distribution and guide pathway design. We show that the innate dominant ethanol pathway of Z. mobilis restricts the titer and rate of these biochemicals. A dominant-metabolism compromised intermediate-chassis (DMCI) strategy is then developed through introducing low toxicity but cofactor imbalanced 2,3-butanediol pathway, and a recombinant D-lactate producer is constructed to produce more than 140.92 g/L and 104.6 g/L D-lactate (yield > 0.97 g/g) from glucose and corncob residue hydrolysate, respectively. Additionally, techno-economic analysis (TEA) and life cycle assessment (LCA) demonstrate the commercialization feasibility and greenhouse gas reduction capability of lignocellulosic D-lactate. This work thus establishes a paradigm for engineering recalcitrant microorganisms as biorefinery chassis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608335PMC
http://dx.doi.org/10.1038/s41467-024-54897-5DOI Listing

Publication Analysis

Top Keywords

paradigm engineering
8
engineering recalcitrant
8
biorefinery chassis
8
recalcitrant non-model
4
non-model microorganism
4
microorganism dominant
4
dominant metabolic
4
pathway
4
metabolic pathway
4
pathway biorefinery
4

Similar Publications

Organotypic Culture of Adult Vascularized Porcine Retina Explants In Vitro on Nanotube Scaffolds.

Biol Proced Online

September 2025

Division of Surface Physics, Department of Physics and Earth System Sciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.

Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.

Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds.

View Article and Find Full Text PDF

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Fractional-order adaptive fuzzy decentralized tracking control for steer-by-wire system.

ISA Trans

August 2025

Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehicle Distributed Drive and Intelligent Wire Control Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehi

The steer-by-wire (SbW) system, as the core component of vehicle steering, needs to track the front wheel angle accurately. To mitigate the angle tracking accuracy degradation caused by D-Q axes coupling, time-varying motor electrical parameters, and load disturbance, a fractional-order adaptive fuzzy decentralized tracking control (FAFDTC) strategy is proposed in this paper. First, considering time-varying motor parameters, D-Q axes coupling, and fractional-order characteristics of components, a fractional-order SbW interconnected system is constructed to enhance its ability to characterize nonlinearities, time-varying dynamics, and system coupling.

View Article and Find Full Text PDF

Technological advances and the desire to reduce dependence on animal models have brought human-relevant models to the forefront of drug development. This paradigm shift is leveraging the advances in systems and new approach methodologies (NAMs), which was the focus of a workshop convened by the Health and Environmental Sciences Institute (HESI) in May 2024. Highlights included discussions on predicting cardiac failure modes and the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), microfluidic systems like BioFlux™, and engineered heart tissues in enhancing early-stage drug safety assessments.

View Article and Find Full Text PDF

Prior researches on global-local processing have focused on hierarchical objects in the visual modality, while the real-world involves multisensory interactions. The present study investigated whether the simultaneous presentation of auditory stimuli influences the recognition of visually hierarchical objects. We added four types of auditory stimuli to the traditional visual hierarchical letters paradigm:no sound (visual-only), a pure tone, a spoken letter that was congruent with the required response (response-congruent), or a spoken letter that was incongruent with it (response-incongruent).

View Article and Find Full Text PDF