Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Stroke is the second leading cause of death and the third leading cause of disability worldwide. Motor dysfunction is a common sequela, which seriously affects the lives of patients. Theta burst stimulation (TBS) is a new transcranial magnetic therapy for improving motor dysfunction after stroke. However, there remains a lack of studies on the mechanism, theoretical model, and effectiveness of TBS in improving motor dysfunction following stroke.

Objective: This paper provides a comprehensive overview and assessment of the current impact of TBS on motor rehabilitation following stroke and analyzes potential factors contributing to treatment effect disparities. The aim is to offer recommendations for further refining the TBS treatment approach in subsequent clinical studies while also furnishing evidence for devising tailored rehabilitation plans for stroke patients.

Methods: This study was conducted following PRISMA guidelines. PubMed, Embase, Web of Science, and the Cochrane Library were searched systematically from the establishment of the database to February 2024. Relevant studies using TBS to treat patients with motor dysfunction after stroke will be included. Data on study characteristics, interventions, outcome measures, and primary outcomes were extracted. The Modified Downs and Black Checklist was used to assess the potential bias of the included studies, and a narrative synthesis of the key findings was finally conducted.

Results: The specific mechanism of TBS in improving motor dysfunction after stroke has not been fully elucidated, but it is generally believed that TBS can improve the functional prognosis of patients by regulating motor cortical excitability, inducing neural network reorganization, and regulating cerebral circulation metabolism. Currently, most relevant clinical studies are based on the interhemispheric inhibition model (IHI), the vicariation model, and the bimodal balance-recovery model. Many studies have verified the effectiveness of TBS in improving the motor function of stroke patients, but the therapeutic effect of some studies is controversial.

Conclusion: Our results show that TBS has a good effect on improving motor function in stroke patients, but more large-scale, high-quality, multicenter studies are still necessary in the future to further clarify the mechanism of TBS and explore the optimal TBS treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605871PMC
http://dx.doi.org/10.1186/s40001-024-02170-2DOI Listing

Publication Analysis

Top Keywords

motor dysfunction
20
improving motor
20
dysfunction stroke
12
tbs improving
12
tbs
11
motor
10
stroke
9
theta burst
8
burst stimulation
8
studies
8

Similar Publications

Purpose: Degenerative lumbar spinal stenosis (DLSS) represents an increasing challenge due to the aging population. The natural course of untreated DLSS is largely unknown. For the acute DLSS decompensations, the main concern remains the opportunity and timing of surgery, i.

View Article and Find Full Text PDF

[Impact of transcranial magnetic stimulation on depressive symptoms relief in patients with chronic neuropathic pain and comorbid depression: A narrative literature review].

Encephale

September 2025

Centre de référence régional des pathologies anxieuses et de la dépression, pôle de psychiatrie générale et universitaire, centre hospitalier Charles-Perrens, 33076 Bordeaux, France; Inserm U1215, Neurocentre Magendie, 33000 Bordeaux, France. Electronic address:

Neuropathic pain results from an injury or a dysfunction of the somatosensory system. Management of this disease is complex due to a restricted therapeutic arsenal and limited efficacy of currently available treatments. Because of its chronic and disabling nature, neuropathic pain is strongly associated with depressive disorders.

View Article and Find Full Text PDF

Characterization of CNS Network Changes in Two Rodent Models of Chronic Pain.

Biol Pharm Bull

September 2025

Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).

View Article and Find Full Text PDF

Spontaneous thrombosis of vein of Galen malformation.

BMJ Case Rep

September 2025

Neurosurgery, AIIMS Rishikesh, Rishikesh, Uttarakhand, India.

Vein of Galen malformation (VGM) is an uncommon vascular anomaly, with spontaneous thrombosis within it being exceedingly rare. This case report describes a paediatric patient in early adolescence who presented with a 15-day history of holocranial headache and vomiting. Examination revealed significant papilloedema, and imaging confirmed a thrombosed VGM causing upstream hydrocephalus.

View Article and Find Full Text PDF

Fahr's syndrome is a rare neurological condition marked by unusual calcifications in the basal ganglia and other brain regions, often resulting from metabolic disorders, such as hypoparathyroidism. Secondary hypoparathyroidism, a frequent complication of total thyroidectomy, can lead to Fahr's syndrome, manifesting as movement disorders, seizures, psychiatric symptoms and indications of calcium deficiency. This case report discusses a woman in her mid-30s who developed Fahr's syndrome due to secondary hypoparathyroidism after total thyroidectomy.

View Article and Find Full Text PDF