Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spatial organization of chromatin within the eukaryotic nucleus is critical in regulating key cellular functions, such as gene expression, and its disruption can lead to disease. Advances in experimental techniques, such as Hi-C and microscopy, have significantly enhanced our understanding of chromatin's intricate and dynamic architecture, revealing complex patterns of interaction at multiple scales. Along with experimental methods, physics-based computational models, including polymer phase separation and loop-extrusion mechanisms, have been developed to explain chromatin structure in a principled manner. Here, we illustrate genomewide applications of these models, highlighting their ability to predict chromatin contacts across different scales and to spread light on the underlying molecular determinants. Additionally, we discuss how these models provide a framework for understanding alterations in chromosome folding associated with disease states, such as SARS-CoV-2 infection and pathogenic structural variants, providing valuable insights into the role of chromatin architecture in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12314472PMC
http://dx.doi.org/10.1152/physiol.00050.2024DOI Listing

Publication Analysis

Top Keywords

chromatin architecture
8
chromatin
5
multiscale perspective
4
perspective chromatin
4
architecture polymer
4
polymer physics
4
physics spatial
4
spatial organization
4
organization chromatin
4
chromatin eukaryotic
4

Similar Publications

Small-scale in situ Hi-C protocol for early embryos to resolve the three-dimensional genome structure.

STAR Protoc

September 2025

College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China. Electronic address:

High-throughput chromosome conformation capture (Hi-C) provides genome-wide insights into chromatin interactions within the three-dimensional structure of the nucleus, making it a powerful tool for studying genome architecture. Here, we provide a modified in situ Hi-C protocol for small cell numbers, utilizing 50-100 embryonic cells at the 8-cell stage to investigate chromatin organization during bovine early embryonic development. This protocol overcomes the challenges of limited sample availability and offers valuable insights into chromatin dynamics during bovine early embryogenesis.

View Article and Find Full Text PDF

Bivalve mollusks represent a taxonomically and economically significant clade within Mollusca. However, the regulatory mechanisms governing their embryonic development remain poorly characterized. The dwarf surf clam ( ), characterized by a short generation time and high fecundity, has recently gained recognition as an ideal model system for bivalve embryological research.

View Article and Find Full Text PDF

Topologically associating domains (TADs) and chromatin architectural loops impact promoter-enhancer interactions, with CCCTC-binding factor (CTCF) defining TAD borders and loop anchors. TAD boundaries and loops progressively strengthen upon embryonic stem (ES) cell differentiation, underscoring the importance of chromatin topology in ontogeny. However, the mechanisms driving this process remain unclear.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.

View Article and Find Full Text PDF

Wings apart-like protein (WAPL) has emerged as a key player in maintaining genome integrity through its regulation of cohesin dynamics, which govern chromatin architecture and gene expression. WAPL mainly acts as a cohesin release factor and ensures proper chromosomal segregation during mitosis by promoting sister chromatid resolution. Owing to its prominent role in cell biology, WAPL dysregulation can cause genomic instability and disrupt chromosomal cohesion, leading to diseases such as cancer.

View Article and Find Full Text PDF