Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Localization of unmanned aircraft systems (UASs) in indoor scenarios and GNSS-denied environments is a difficult problem, particularly in dynamic scenarios where traditional on-board equipment (such as LiDAR, radar, sonar, camera) may fail. In the framework of autonomous UAS missions, precise feedback on real-time aircraft position is very important, and several technologies alternative to GNSS-based approaches for UAS positioning in indoor navigation have been recently explored. In this paper, we propose a low-cost IPS for UAVs, based on Bluetooth low energy (BLE) beacons, which exploits the (received signal strength indicator) for distance estimation and positioning. Distance information from measured values can be degraded by multipath, reflection, and fading that cause unpredictable variability of the and may lead to poor-quality measurements. To enhance the accuracy of the position estimation, this work applies a differential distance correction (DDC) technique, similar to differential GNSS (DGNSS) and real-time kinematic (RTK) positioning. The method uses differential information from a reference station positioned at known coordinates to correct the position of the rover station. A mathematical model was established to analyze the relation between the and the distance from Bluetooth devices (Eddystone BLE beacons) placed in the indoor operation field. The master reference station was a Raspberry Pi 4 model B, and the rover (unknown target) was an Arduino Nano 33 BLE microcontroller, which was mounted on-board a UAV. Position estimation was achieved by trilateration, and the extended Kalman filter (EKF) was applied, considering the nonlinear propriety of beacon signals to correct data from noise, drift, and bias errors. Experimental results and system performance analysis show the feasibility of this methodology, as well as the reduction of position uncertainty obtained by the DCC technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598118PMC
http://dx.doi.org/10.3390/s24227170DOI Listing

Publication Analysis

Top Keywords

ble beacons
12
bluetooth low
8
low energy
8
energy ble
8
position estimation
8
reference station
8
position
5
differential
4
differential positioning
4
positioning bluetooth
4

Similar Publications

The efficient utilization of medical devices is crucial. This study aimed to develop a method to visualize and optimize the usage patterns of portable ultrasound devices in operating rooms using the Internet of Things (IoT) technology. Bluetooth low-energy (BLE) transmitters were attached to the devices, and receivers were placed in storage.

View Article and Find Full Text PDF

Bluetooth low energy (BLE)-based indoor localization has been extensively researched due to its cost-effectiveness, low power consumption, and ubiquity. Despite these advantages, the variability of received signal strength indicator (RSSI) measurements, influenced by physical obstacles, human presence, and electronic interference, poses a significant challenge to accurate localization. In this work, we present an optimised method to enhance indoor localization accuracy by utilising multiple BLE beacons in a radio frequency (RF)-dense modern building environment.

View Article and Find Full Text PDF

RSSI-based proximity positioning is a well-established technique for indoor localization, featuring simplicity and cost-effectiveness, requiring low-price and off-the-shelf hardware. However, it suffers from low accuracy (in NLOS traffic), noise, and multipath fading issues. In large complex spaces, such as museums, where heavy visitor traffic is expected to seriously impact the ability to maintain LOS, RSSI coupled with Bluetooth Low Energy (BLE) seems ideal in terms of market availability, cost-/energy-efficiency and scalability that affect competing technologies, provided it achieves adequate accuracy.

View Article and Find Full Text PDF

Occupancy monitoring (OM) and the localization of individuals within indoor environments using wearable devices offer a very promising data communication solution in applications such as home automation, smart office management, outbreak monitoring, and emergency operating plans. OM is challenging when developing solutions that focus on reduced power consumption and cost. Bluetooth low energy (BLE) technology is energy- and cost-efficient compared to other technologies.

View Article and Find Full Text PDF

High-precision indoor localization and tracking are essential requirements for the safe navigation and task execution of autonomous mobile robots. Despite the growing importance of mobile robots in various areas, achieving precise indoor localization remains challenging due to signal interference, multipath propagation, and complex indoor layouts. In this work, we present the first comprehensive study comparing the accuracy of Bluetooth low energy (BLE), WiFi, and ultra wideband (UWB) technologies for the indoor localization of mobile robots under various circumstances.

View Article and Find Full Text PDF